AIShurA / app.py
ans123's picture
Update app.py
cc80c5b verified
raw
history blame
86 kB
# filename: app_openai_serper_v4.py
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests # For Serper API
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
import uuid
import re
# --- OpenAI Integration ---
import openai
# --- Load environment variables ---
load_dotenv()
# --- Set up logging ---
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configure API keys ---
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
if not OPENAI_API_KEY:
logger.warning("OPENAI_API_KEY not found. AI features will not work.")
else:
logger.info("OpenAI API Key found.")
if not SERPER_API_KEY:
logger.warning("SERPER_API_KEY not found. Live web search features will not work.")
else:
logger.info("Serper API Key found.")
# --- Initialize the OpenAI client ---
try:
# Ensure the API key is not None before initializing
if OPENAI_API_KEY:
client = openai.OpenAI(api_key=OPENAI_API_KEY)
logger.info("OpenAI client initialized successfully.")
else:
client = None
logger.error("Failed to initialize OpenAI client: API key is missing.")
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {e}")
client = None
# --- Model configuration ---
MODEL_ID = "gpt-4o" # Using OpenAI's GPT-4o model
# --- Constants ---
# Using the same enhanced constants from v3
EMOTIONS = ["Unmotivated 😩", "Anxious πŸ˜₯", "Confused πŸ€”", "Excited πŸŽ‰", "Overwhelmed 🀯", "Discouraged πŸ˜”", "Hopeful ✨", "Focused 😎", "Stuck 🧱"]
GOAL_TYPES = [
"Get a job (Big Company) 🏒", "Get a job (Startup) 🌱", "Find an Internship πŸŽ“", "Freelance/Contract Work πŸ’Ό",
"Change Careers πŸš€", "Improve Specific Skills πŸ’‘", "Build Professional Network 🀝", "Leadership Development πŸ“ˆ", "Explore Options πŸ€”"
]
USER_DB_PATH = "user_database_v4.json" # New DB file for this version
RESUME_FOLDER = "user_resumes_v4"
PORTFOLIO_FOLDER = "user_portfolios_v4"
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)
# --- Tool Definitions for OpenAI ---
# Format matches the structure expected by the OpenAI API
tools_list_openai = [
{
"type": "function",
"function": {
"name": "generate_document_template",
"description": "Generate a document template (like a resume or cover letter) based on type, career field, and experience level.",
"parameters": {
"type": "object",
"properties": {
"document_type": {"type": "string", "description": "e.g., Resume, Cover Letter, LinkedIn Summary"},
"career_field": {"type": "string", "description": "Target industry or field"},
"experience_level": {"type": "string", "description": "e.g., Entry, Mid, Senior, Student"}
},
"required": ["document_type"]
},
}
},
{
"type": "function",
"function": {
"name": "create_personalized_routine",
"description": "Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.",
"parameters": {
"type": "object",
"properties": {
"emotion": {"type": "string", "description": "User's current primary emotion"},
"goal": {"type": "string", "description": "User's primary career goal"},
"available_time_minutes": {"type": "integer", "description": "Average minutes per day user can dedicate"},
"routine_length_days": {"type": "integer", "description": "Desired length of the routine in days (e.g., 7 for weekly)"}
},
"required": ["emotion", "goal"]
},
}
},
{
"type": "function",
"function": {
"name": "analyze_resume",
"description": "Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal. Provides strengths, weaknesses, and suggestions.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {"type": "string", "description": "The full text content of the user's resume"},
"career_goal": {"type": "string", "description": "The specific career goal to analyze against"}
},
"required": ["resume_text", "career_goal"]
},
}
},
{
"type": "function",
"function": {
"name": "analyze_portfolio",
"description": "Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.",
"parameters": {
"type": "object",
"properties": {
"portfolio_url": {"type": "string", "description": "URL link to the online portfolio (optional)"},
"portfolio_description": {"type": "string", "description": "User's description of the portfolio content and purpose"},
"career_goal": {"type": "string", "description": "The specific career goal to analyze against"}
},
"required": ["portfolio_description", "career_goal"]
},
}
},
{
"type": "function",
"function": {
"name": "extract_and_rate_skills_from_resume",
"description": "Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume. Useful for identifying strengths and gaps.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {"type": "string", "description": "The full text content of the user's resume"},
"max_skills": {"type": "integer", "description": "Maximum number of skills to extract (default 8)"}
},
"required": ["resume_text"]
},
}
},
{
"type": "function",
"function": {
"name": "search_jobs_courses_skills",
"description": "Search the web using Serper API for relevant job openings, online courses, or skills development resources based on the user's goals, location, and potentially identified skill gaps.",
"parameters": {
"type": "object",
"properties": {
"search_query": {"type": "string", "description": "The specific search query (e.g., 'remote data analyst jobs in California', 'online Python courses for beginners', 'project management certifications')"},
"search_type": {"type": "string", "description": "Type of search: 'jobs', 'courses', 'skills', or 'general'"},
"location": {"type": "string", "description": "Geographical location for the search (if applicable, e.g., 'London, UK')"}
},
"required": ["search_query", "search_type"]
},
}
}
]
# --- User Database Functions (Enhanced Profile - Adapted for OpenAI History) ---
def load_user_database():
try:
with open(USER_DB_PATH, 'r', encoding='utf-8') as file: db = json.load(file)
# Validation for chat history (OpenAI format: role='user'/'assistant'/'system'/'tool', content=str, tool_calls=list[dict])
for user_id in db.get('users', {}):
profile = db['users'][user_id]
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
profile['chat_history'] = []
else:
fixed_history = []
for msg in profile['chat_history']:
if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
# Basic check for standard messages
if msg['role'] in ['user', 'assistant', 'system'] and isinstance(msg.get('content'), (str, type(None))):
# Allow None content for assistant messages that only have tool calls
if msg['role'] == 'assistant' or msg.get('content') is not None:
# Check for tool_calls structure if present
if 'tool_calls' in msg:
if isinstance(msg['tool_calls'], list) and all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in msg['tool_calls']):
fixed_history.append(msg)
else:
logger.warning(f"Skipping message with invalid tool_calls for user {user_id}: {msg}")
else:
fixed_history.append(msg) # Valid user/system/assistant message without tool calls
else:
logger.warning(f"Skipping message with invalid role/content type for user {user_id}: {msg}")
elif isinstance(msg, dict) and msg.get('role') == 'tool':
# Check for tool response structure
if 'tool_call_id' in msg and 'content' in msg and isinstance(msg.get('content'), str):
# Note: OpenAI API expects 'name' in the tool call, but the response message uses 'tool_call_id'. Content should be stringified JSON result.
fixed_history.append(msg)
else:
logger.warning(f"Skipping invalid tool message structure for user {user_id}: {msg}")
else:
logger.warning(f"Skipping unrecognized message structure for user {user_id}: {msg}")
profile['chat_history'] = fixed_history
# Ensure other lists/fields exist (same as v3)
for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
if key not in profile or not isinstance(profile.get(key), list):
profile[key] = []
for key in ['name', 'location', 'current_emotion', 'career_goal', 'industry', 'preferred_work_style', 'long_term_aspirations', 'resume_path', 'portfolio_path']:
if key not in profile:
profile[key] = ""
if 'progress_points' not in profile: profile['progress_points'] = 0
if 'experience_level' not in profile: profile['experience_level'] = "Not specified"
return db
except (FileNotFoundError, json.JSONDecodeError): logger.info(f"DB file '{USER_DB_PATH}' not found/invalid. Creating new."); db = {'users': {}}; save_user_database(db); return db
except Exception as e: logger.error(f"Error loading DB from {USER_DB_PATH}: {e}"); return {'users': {}}
def save_user_database(db):
# (Identical to v3)
try:
with open(USER_DB_PATH, 'w', encoding='utf-8') as file: json.dump(db, file, indent=4, ensure_ascii=False)
except Exception as e: logger.error(f"Error saving DB to {USER_DB_PATH}: {e}")
def get_user_profile(user_id):
# (Mostly identical to v3, ensures profile exists)
db = load_user_database()
if user_id not in db.get('users', {}):
db['users'] = db.get('users', {})
# Initialize enhanced profile structure
db['users'][user_id] = {
"user_id": user_id, "name": "", "location": "", "industry": "",
"experience_level": "Not specified", "preferred_work_style": "Any",
"values": [], "strengths": [], "areas_for_development": [],
"long_term_aspirations": "", "current_emotion": "", "career_goal": "",
"progress_points": 0, "completed_tasks": [], "upcoming_events": [],
"routine_history": [], "daily_emotions": [], "resume_path": "",
"portfolio_path": "", "recommendations": [],
"chat_history": [], # Stores history in OpenAI format {role: 'user'/'assistant'/'system'/'tool', content: str, tool_calls?: list, tool_call_id?: str}
"joined_date": datetime.now().isoformat()
}
save_user_database(db)
profile = db.get('users', {}).get(user_id, {})
# Ensure critical lists exist after loading (handled mostly in load_user_database)
if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list):
profile['chat_history'] = []
for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
if key not in profile: profile[key] = []
return profile
# --- Database Update Functions (Adjust chat message structure for OpenAI) ---
def update_user_profile(user_id, updates):
# (Identical to v3)
db = load_user_database()
if user_id in db.get('users', {}):
profile = db['users'][user_id]
for key, value in updates.items(): profile[key] = value
save_user_database(db); return profile
else: logger.warning(f"Attempted update non-existent profile: {user_id}"); return None
def add_task_to_user(user_id, task):
# (Identical to v3)
db = load_user_database(); profile = db.get('users', {}).get(user_id)
if profile:
if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list): profile['completed_tasks'] = []
task_with_date = { "task": task, "date": datetime.now().isoformat(), "points": random.randint(10, 25) } # Add points here
profile['completed_tasks'].append(task_with_date)
profile['progress_points'] = profile.get('progress_points', 0) + task_with_date["points"] # Update total points
save_user_database(db); return profile
return None
def add_emotion_record(user_id, emotion):
# (Identical to v3)
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
db = load_user_database(); profile = db.get('users', {}).get(user_id)
if profile:
if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list): profile['daily_emotions'] = []
emotion_record = { "emotion": cleaned_emotion, "date": datetime.now().isoformat() }
profile['daily_emotions'].append(emotion_record)
profile['current_emotion'] = cleaned_emotion
save_user_database(db); return profile
return None
def add_routine_to_user(user_id, routine):
# (Identical to v3)
db = load_user_database(); profile = db.get('users', {}).get(user_id)
if profile:
if 'routine_history' not in profile or not isinstance(profile['routine_history'], list): profile['routine_history'] = []
try: days_delta = int(routine.get('days', 7))
except: days_delta = 7
end_date = (datetime.now() + timedelta(days=days_delta)).isoformat()
routine_with_date = { "routine": routine, "start_date": datetime.now().isoformat(), "end_date": end_date, "completion": 0 }
profile['routine_history'].insert(0, routine_with_date); profile['routine_history'] = profile['routine_history'][:10]
save_user_database(db); return profile
return None
def save_user_resume(user_id, resume_text):
# (Identical to v3)
if not resume_text: return None
filename, filepath = f"{user_id}_resume.txt", os.path.join(RESUME_FOLDER, f"{user_id}_resume.txt")
try:
with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text)
update_user_profile(user_id, {"resume_path": filepath})
logger.info(f"Resume saved: {filepath}"); return filepath
except Exception as e: logger.error(f"Error saving resume {filepath}: {e}"); return None
def save_user_portfolio(user_id, portfolio_url, portfolio_description):
# (Identical to v3)
if not portfolio_description: return None
filename, filepath = f"{user_id}_portfolio.json", os.path.join(PORTFOLIO_FOLDER, f"{user_id}_portfolio.json")
portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()}
try:
with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False)
update_user_profile(user_id, {"portfolio_path": filepath})
logger.info(f"Portfolio saved: {filepath}"); return filepath
except Exception as e: logger.error(f"Error saving portfolio {filepath}: {e}"); return None
def add_recommendation_to_user(user_id, recommendation):
# (Identical to v3)
db = load_user_database(); profile = db.get('users', {}).get(user_id)
if profile:
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = []
recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"}
profile['recommendations'].insert(0, recommendation_with_date); profile['recommendations'] = profile['recommendations'][:20]
save_user_database(db); return profile
return None
def add_chat_message(user_id, role, message_content):
"""Adds a message to the user's chat history using OpenAI format."""
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if not profile:
logger.warning(f"Profile not found for {user_id} when adding chat message.")
return None
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
profile['chat_history'] = []
if role not in ['user', 'assistant', 'system', 'tool']:
logger.warning(f"Invalid role '{role}' for OpenAI chat history.")
return profile
message = {"role": role}
if role == 'user' or role == 'system':
if isinstance(message_content, str):
message['content'] = message_content
else:
logger.warning(f"Invalid content type for role {role}: {type(message_content)}. Expected string.")
return profile
elif role == 'assistant':
# Assistant message can have content (string/None) and/or tool_calls (list)
if isinstance(message_content, dict):
message['content'] = message_content.get('content') # Can be None if only tool calls
if 'tool_calls' in message_content:
# Basic validation of tool_calls structure
if isinstance(message_content['tool_calls'], list) and all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in message_content['tool_calls']):
message['tool_calls'] = message_content['tool_calls']
else:
logger.warning(f"Invalid tool_calls structure in assistant message: {message_content.get('tool_calls')}")
# Decide whether to store without tool_calls or skip
if message['content'] is None: return profile # Skip if no content and invalid tool_calls
# else store with content only
# Ensure content is string or None
if not isinstance(message['content'], (str, type(None))):
logger.warning(f"Invalid content type in assistant message dict: {type(message['content'])}")
message['content'] = str(message['content']) # Attempt conversion or handle error
elif isinstance(message_content, str):
message['content'] = message_content # Simple text response
else:
logger.warning(f"Invalid content type for role {role}: {type(message_content)}. Expected dict or string.")
return profile
elif role == 'tool':
# Tool message needs tool_call_id and content (stringified result)
if isinstance(message_content, dict) and 'tool_call_id' in message_content and 'content' in message_content:
message['tool_call_id'] = message_content['tool_call_id']
# Ensure content is stringified JSON or simple string
if isinstance(message_content['content'], str):
message['content'] = message_content['content']
else:
try:
message['content'] = json.dumps(message_content['content'])
except Exception as e:
logger.error(f"Could not stringify tool content: {e}")
message['content'] = json.dumps({"error": "Failed to serialize tool result."})
else:
logger.warning(f"Invalid content format for role {role}: {message_content}. Expected dict with 'tool_call_id' and 'content'.")
return profile
# Add timestamp for potential future use (optional)
# message['timestamp'] = datetime.now().isoformat()
profile['chat_history'].append(message)
# Limit history size (keep system prompt implicit for now)
max_history_turns = 25 # Keep last 25 pairs (user + assistant/tool)
if len(profile['chat_history']) > max_history_turns * 2:
# Find first non-system message index if system message exists
first_non_system = 0
if profile['chat_history'] and profile['chat_history'][0]['role'] == 'system':
first_non_system = 1
# Keep system message + last N turns
profile['chat_history'] = profile['chat_history'][:first_non_system] + profile['chat_history'][-(max_history_turns * 2):]
save_user_database(db)
return profile
# --- Basic Routine Fallback Function (keep as is) ---
def generate_basic_routine(emotion, goal, available_time=60, days=7):
# (Code identical to the provided v3 version - a good fallback)
logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}")
routine_types = { "job_search": [ {"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."}, {"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."}, {"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."}, {"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."} ], "skill_building": [ {"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."}, {"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."}, {"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."}, {"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."} ], "motivation_wellbeing": [ {"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."}, {"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."}, {"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."}, {"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."} ] }
cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower()
negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged", "stuck"]
if any(term in goal.lower() for term in ["job", "internship", "company", "freelance", "contract"]): base_type = "job_search"
elif any(term in goal.lower() for term in ["skill", "learn", "development"]): base_type = "skill_building"
elif "network" in goal.lower(): base_type = "job_search"
else: base_type = "skill_building"
include_wellbeing = cleaned_emotion in negative_emotions or "overwhelmed" in cleaned_emotion
daily_tasks_list = []
for day in range(1, days + 1):
day_tasks, remaining_time, tasks_added_count = [], available_time, 0
possible_tasks = routine_types[base_type].copy()
if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"])
random.shuffle(possible_tasks)
for task in possible_tasks:
if task.get("duration", 0) > 0 and task["duration"] <= remaining_time and tasks_added_count < 3:
day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1
if remaining_time < 10 or tasks_added_count >= 3: break
daily_tasks_list.append({"day": day, "tasks": day_tasks})
routine = {"name": f"{days}-Day Focus Plan", "description": f"A focused {days}-day plan to help you with '{goal}', especially while feeling {cleaned_emotion}. We'll do this step-by-step!", "days": days, "daily_tasks": daily_tasks_list, "support_message": f"Hey, I know feeling {cleaned_emotion} while aiming for '{goal}' can be tough. We've got this routine to help break it down. One step at a time, okay? You're doing great just by planning!"}
return routine # Return dict directly
# --- Tool Implementation Functions (Return JSON strings or dicts for OpenAI) ---
# These functions remain largely the same internally but ensure output is serializable.
def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> str:
"""Generates a basic markdown template. Returns JSON string."""
logger.info(f"Executing tool: generate_document_template(type='{document_type}', field='{career_field}', exp='{experience_level}')")
template = f"## Basic Template: {document_type}\n\n"
template += f"**Target Field:** {career_field or 'Not specified'}\n"
template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n"
# (Keep the template content from v3/previous version)
if "resume" in document_type.lower(): template += """### Contact Information\n* Name:\n* Phone:\n* Email:\n* LinkedIn URL:\n* Portfolio URL (Optional):\n\n### Summary/Objective\n* _[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. Make it impactful! ]_\n\n### Experience\n**Company Name | Location | Job Title | Start Date – End Date**\n* Accomplishment 1 (Use action verbs: Led, Managed, Developed, Increased X by Y%. Quantify results!)\n* Accomplishment 2\n* _[ Repeat for other relevant positions ]_\n\n### Education\n**University/Institution Name | Degree | Graduation Date (or Expected)**\n* Relevant coursework, honors, activities (Optional)\n\n### Skills\n* **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics, Figma, AWS ]\n* **Languages:** [ e.g., English (Native), Spanish (Fluent) ]\n* **Other:** [ Certifications, relevant tools, methodologies like Agile/Scrum ]\n"""
elif "cover letter" in document_type.lower(): template += """[Your Name]\n[Your Address]\n[Your Phone]\n[Your Email]\n\n[Date]\n\n[Hiring Manager Name (if known), or 'Hiring Team']\n[Hiring Manager Title (if known)]\n[Company Name]\n[Company Address]\n\n**Subject: Application for [Job Title] Position - [Your Name]**\n\nDear [Mr./Ms./Mx. Last Name or Hiring Team],\n\n**Introduction:** State the position you're applying for and where you saw it. Express genuine enthusiasm for the role *and* the company. Briefly highlight 1-2 key qualifications that make you a perfect fit right from the start.\n* _[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill Relevant to Job], I am confident I can bring significant value to [Company Name]'s mission in [Specific Area Company Works In]. ]_\n\n**Body Paragraph(s):** This is where you connect your experience to the job description. Don't just list duties; show *impact*. Use examples (think STAR method: Situation, Task, Action, Result). Explain *why* you're drawn to *this specific company* – mention their values, projects, or recent news. Show you've done your homework!\n* _[ Example: In my previous role at [Previous Company], I spearheaded a project that [Quantifiable achievement relevant to new job], demonstrating my expertise in [Skill required by new job]. I admire [Company Name]'s innovative approach to [Specific Company Initiative], and I believe my skills in [Another Relevant Skill] align perfectly with the requirements of this role and your company culture. ]_\n\n**Conclusion:** Reiterate your strong interest and suitability. Briefly summarize your key selling points. State your call to action confidently (e.g., "I am eager to discuss how my skills can benefit [Company Name]..."). Thank the reader for their time and consideration.\n* _[ Example: Thank you for considering my application. My attached resume provides further detail on my qualifications. I am excited about the potential to contribute to your team and look forward to hearing from you soon regarding an interview. ]_\n\nSincerely,\n\n[Your Typed Name]\n"""
elif "linkedin summary" in document_type.lower(): template += """### LinkedIn Summary / About Section Template\n\n**Headline:** [ Make this keyword-rich and concise! Who are you professionally? What's your focus? e.g., 'Software Engineer specializing in AI & Cloud | Python | Ex-Google | Building Innovative Solutions' OR 'Marketing Manager | Driving Growth for SaaS Startups | Content Strategy & Demand Generation' ]\n\n**About Section:**\n\n* **[ Paragraph 1: Hook & Overview ]** Start with a compelling statement about your passion, mission, or core expertise. Who are you, what do you do, and what drives you? Use keywords relevant to your target roles/industry. Think of this as your elevator pitch.\n* **[ Paragraph 2: Key Skills & Experience Highlights ]** Detail your core competencies, both technical and soft skills. Mention significant experiences, types of projects, or industries you've worked in. Quantify achievements whenever possible (e.g., 'Managed budgets up to $X', 'Increased user engagement by Y%'). Tailor this to attract your desired audience (recruiters, clients, collaborators).\n* **[ Paragraph 3: Career Goals & What You're Seeking (Optional but Recommended) ]** Briefly state your current career aspirations. What kind of opportunities, connections, or challenges are you looking for? Be specific if possible (e.g., 'Seeking opportunities in AI ethics', 'Open to collaborating on open-source projects').\n* **[ Paragraph 4: Call to Action / Personality (Optional) ]** You might invite relevant connections, mention personal interests related to your field, or add a touch of personality to make you more memorable. What makes you, you?\n* **[ Specialties/Keywords: ]** _[ List 5-15 key terms separated by commas or bullet points that recruiters might search for. e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Python, Java, Cloud Security, UX/UI Design, B2B Marketing ]_\n"""
else: template += "[ Template structure for this document type will be provided here. Let me know what you need! ]"
return json.dumps({"template_markdown": template}) # Return JSON string
def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> str:
"""Creates a personalized routine using fallback. Returns JSON string."""
logger.info(f"Executing tool: create_personalized_routine(emo='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})")
logger.warning("Using basic fallback for create_personalized_routine for robustness.")
try:
routine_dict = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days)
if not routine_dict or not isinstance(routine_dict, dict):
raise ValueError("Basic routine generation failed to return a valid dictionary.")
return json.dumps(routine_dict) # Return JSON string
except Exception as e:
logger.error(f"Error in create_personalized_routine fallback: {e}")
return json.dumps({"error": f"Couldn't create a routine right now due to an error: {e}. Maybe try simplifying the goal or adjusting the time?"})
def analyze_resume(resume_text: str, career_goal: str) -> str:
"""Provides analysis of the resume (Simulated). Returns JSON string."""
logger.info(f"Executing tool: analyze_resume(goal='{career_goal}', len={len(resume_text)})")
logger.warning("Using placeholder analysis for analyze_resume tool.")
analysis = { "strengths": ["Clear contact information.", "Uses some action verbs.", f"Mentions skills potentially relevant to '{career_goal}'."], "areas_for_improvement": ["Quantify achievements more (e.g., 'Increased X by Y%').", f"Tailor skills section specifically for '{career_goal}' roles.", "Check for consistent formatting and tense.", "Add a compelling summary/objective statement."], "format_feedback": "Overall format seems clean, check consistency.", "content_feedback": f"Content shows potential relevance to '{career_goal}', but needs more specific examples and quantified results.", "keyword_suggestions": ["Review job descriptions for "+ career_goal +" and incorporate relevant keywords like 'Keyword1', 'Keyword2', 'Keyword3'."], "next_steps": ["Revise 'Experience' bullet points with measurable results.", "Tailor Summary/Objective and Skills sections per application.", "Proofread carefully."] }
return json.dumps({"analysis": analysis}) # Return JSON string
def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> str:
"""Provides analysis of the portfolio (Simulated). Returns JSON string."""
logger.info(f"Executing tool: analyze_portfolio(goal='{career_goal}', url='{portfolio_url}', desc_len={len(portfolio_description)})")
logger.warning("Using placeholder analysis for analyze_portfolio tool.")
analysis = { "alignment_with_goal": f"Based on description, seems moderately aligned with '{career_goal}'. Review specific projects.", "strengths": ["Includes a variety of projects (based on description).", "Clear description provided helps context."] + (["URL provided."] if portfolio_url else []), "areas_for_improvement": [f"Ensure project descriptions clearly link skills used to '{career_goal}' requirements.", "Consider adding 1-2 detailed case studies.", "Check navigation is intuitive (if URL provided)."], "presentation_feedback": "Description helpful. " + (f"Review URL ({portfolio_url}) for visual appeal/clarity." if portfolio_url else "Consider creating an online portfolio."), "next_steps": ["Highlight 2-3 projects most relevant to '{career_goal}' prominently.", "Get feedback from peers/mentors.", "Ensure contact info is easily accessible."] }
return json.dumps({"analysis": analysis}) # Return JSON string
def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> str:
"""Extracts and rates skills from resume text (Simulated). Returns JSON string."""
logger.info(f"Executing tool: extract_skills(len={len(resume_text)}, max={max_skills})")
logger.warning("Using placeholder skill extraction for extract_and_rate_skills_from_resume tool.")
possible = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing", "AWS", "Azure", "GCP", "Agile Methodologies", "Machine Learning", "Marketing", "SEO", "Content Creation"]
found = []
resume_lower = resume_text.lower()
for skill in possible:
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower):
score = random.randint(4, 9)
if "lead" in resume_lower or "manage" in resume_lower or "develop" in resume_lower: score = min(10, score + random.randint(0, 1))
found.append({"name": skill, "score": score})
if len(found) >= max_skills: break
if not found and len(resume_text) > 100: found = [ {"name": "Communication", "score": random.randint(5,8)}, {"name": "Teamwork", "score": random.randint(5,8)}, {"name": "Problem Solving", "score": random.randint(5,8)}, ]
logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found]}")
return json.dumps({"skills": found[:max_skills]}) # Return JSON string
# --- Serper Web Search Implementation (Returns JSON string) ---
def search_web_serper(search_query: str, search_type: str = 'general', location: str = None) -> str:
"""Performs a web search using Serper API. Returns JSON string."""
logger.info(f"Executing tool: search_web_serper(query='{search_query}', type='{search_type}', loc='{location}')")
if not SERPER_API_KEY:
logger.error("SERPER_API_KEY not configured.")
return json.dumps({"error": "Web search functionality is not configured."})
api_url = "https://google.serper.dev/search"
payload = json.dumps({"q": search_query,"location": location if location else None})
headers = {'X-API-KEY': SERPER_API_KEY,'Content-Type': 'application/json'}
try:
response = requests.post(api_url, headers=headers, data=payload, timeout=10)
response.raise_for_status()
results = response.json()
extracted_results = []
# (Keep the extraction logic from v3)
if search_type == 'jobs':
if 'jobs' in results:
for job in results['jobs'][:5]: extracted_results.append({"title": job.get('title'),"company": job.get('company_name'),"location": job.get('location'),"link": job.get('link')})
elif 'organic' in results:
for item in results['organic'][:5]:
if any(kw in item.get('title', '').lower() for kw in ['hiring', 'job', 'career', 'vacancy']): extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
elif search_type in ['courses', 'skills']:
if 'organic' in results:
for item in results['organic'][:5]: extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
else: # General search
if 'organic' in results:
for item in results['organic'][:3]: extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
if 'answerBox' in results: extracted_results.insert(0, {"type": "Answer Box","title": results['answerBox'].get('title'),"snippet": results['answerBox'].get('snippet') or results['answerBox'].get('answer'),"link": results['answerBox'].get('link')})
logger.info(f"Serper search successful for '{search_query}'. Found {len(extracted_results)} relevant items.")
return json.dumps({"search_results": extracted_results}) # Return JSON string
except requests.exceptions.RequestException as e:
logger.error(f"Serper API request failed: {e}")
return json.dumps({"error": f"Web search failed: {e}"})
except Exception as e:
logger.error(f"Error processing Serper response: {e}")
return json.dumps({"error": "Failed to process web search results."})
# --- AI Interaction Logic (Using OpenAI GPT-4o) ---
def get_ai_response(user_id: str, user_input: str) -> str:
"""Gets response from OpenAI GPT-4o, handling context, system prompt, and tool calls."""
logger.info(f"Getting OpenAI response for user {user_id}. Input: '{user_input[:100]}...'")
if not client:
logger.error("OpenAI client not initialized.")
return "I'm sorry, my AI core isn't available right now. Please check the configuration."
try:
user_profile = get_user_profile(user_id)
if not user_profile:
logger.error(f"Failed profile retrieval for {user_id}.")
return "Uh oh, I couldn't access your profile details right now. Let's try again in a moment?"
# **INVESTOR NOTE:** The system prompt defines Aishura's unique empathetic persona and strategic approach, now adapted for OpenAI.
current_emotion_display = user_profile.get('current_emotion', 'how you feel')
user_name = user_profile.get('name', 'there')
career_goal = user_profile.get('career_goal', 'your goals')
location = user_profile.get('location', 'your area')
industry = user_profile.get('industry', 'your field')
exp_level = user_profile.get('experience_level', 'your experience level')
system_prompt = f"""
You are Aishura, an advanced AI career assistant powered by OpenAI's GPT-4o. Your core mission is to provide **empathetic, supportive, and highly personalized career guidance**. You are talking to {user_name}.
**Your Persona & Communication Style:**
* **Empathetic & Validating:** ALWAYS acknowledge the user's feelings ({current_emotion_display}). Use phrases like "I hear you," "It sounds like things are tough/exciting," "That makes total sense," "I get it." Validate their experience.
* **Collaborative & Supportive:** Use "we," "us," "together." Frame guidance as a partnership. Phrases: "Okay, let's figure this out together.", "We can tackle this step-by-step.", "I'm here to help you navigate this."
* **Positive & Action-Oriented:** While validating struggles, gently guide towards positive next steps. Focus on what *can* be done. Be realistic but hopeful.
* **Personalized:** Reference the user's profile details subtly: name ({user_name}), goal ({career_goal}), location ({location}), industry ({industry}), experience ({exp_level}).
* **Concise & Clear:** Use markdown for readability (lists, bolding). Avoid jargon. Get to the point while remaining warm.
**Core Functionality - How to Respond:**
1. **Acknowledge & Empathize:** Start by acknowledging their input and expressed emotion (e.g., "Hey {user_name}, I hear that you're feeling {current_emotion_display}. It's completely understandable given [mention context from user input or goal].").
2. **Address the Query Directly:** Answer their specific question or respond to their statement clearly.
3. **Leverage Tools Strategically:**
* **Proactive Suggestions:** If they mention needing a resume, cover letter, or LinkedIn help, suggest using `generate_document_template`. If they feel stuck or need structure, suggest `create_personalized_routine`. If they mention their resume or portfolio, offer to analyze it (`analyze_resume`, `analyze_portfolio`). If they want to understand their skills better from their resume, suggest `extract_and_rate_skills_from_resume`.
* **Web Search (`search_jobs_courses_skills`):**
* **Use ONLY when the user explicitly asks for job openings, courses, skill resources, or specific company information.**
* Construct a specific `search_query` based on their request, `career_goal`, `location`, `industry`, etc.
* Specify `search_type` ('jobs', 'courses', 'skills', 'general').
* Include `location` if relevant.
* **Crucially:** Present the search results clearly. Summarize findings, don't just dump links. E.g., "Okay, I ran a search using Serper and found a few promising [type] results for you:"
* **Do NOT Use Tools If:** The user is just chatting, venting, or asking for general advice not mapping to a tool. Handle these conversationally.
4. **Synthesize Tool Results:** Explain *why* tool results are relevant. Integrate findings into your response.
5. **Maintain Context:** Remember the conversation flow and profile.
6. **Handle Errors Gracefully:** Apologize and explain simply if a tool fails (e.g., "Hmm, I couldn't fetch the [tool purpose] just now. Maybe we can try searching differently, or focus on [alternative action]?"). No technical errors to user.
"""
# Prepare message history for OpenAI API
# Convert stored format to API format {role: '...', content: '...'}
messages = [{"role": "system", "content": system_prompt}]
chat_history = user_profile.get('chat_history', [])
for msg in chat_history:
# Basic validation before appending
if isinstance(msg, dict) and 'role' in msg:
api_msg = {"role": msg["role"]}
if msg["role"] in ["user", "assistant", "system"]:
# Handle messages with content and potentially tool_calls (for assistant)
if 'content' in msg and isinstance(msg.get('content'), (str, type(None))):
api_msg['content'] = msg.get('content') # Can be None for assistant msg with only tool_calls
else:
# If content is missing or wrong type for user/system, skip or log error
if msg["role"] != 'assistant':
logger.warning(f"Skipping message with missing/invalid content for role {msg['role']}: {msg}")
continue
else: # Assistant role, content can be None if tool_calls exist
api_msg['content'] = None
if msg["role"] == 'assistant' and 'tool_calls' in msg and isinstance(msg['tool_calls'], list):
# Validate tool_calls structure before adding
valid_tool_calls = all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in msg['tool_calls'])
if valid_tool_calls:
api_msg['tool_calls'] = msg['tool_calls']
else:
logger.warning(f"Invalid tool_calls structure found in history: {msg['tool_calls']}")
# Decide: skip message, or add without tool_calls if content exists?
if api_msg['content'] is None: continue # Skip if no content either
# Only append if content is not None OR tool_calls are present
if api_msg.get('content') is not None or api_msg.get('tool_calls'):
messages.append(api_msg)
elif msg["role"] == "tool":
# Handle tool responses
if 'tool_call_id' in msg and 'content' in msg and isinstance(msg.get('content'), str):
api_msg['tool_call_id'] = msg['tool_call_id']
api_msg['content'] = msg['content'] # Content is the stringified result
messages.append(api_msg)
else:
logger.warning(f"Skipping invalid tool message structure in history: {msg}")
continue
else:
logger.warning(f"Skipping message with unknown role: {msg['role']}")
continue
else:
logger.warning(f"Skipping invalid message format in history: {msg}")
continue
# Add current user input
messages.append({"role": "user", "content": user_input})
# --- Make the initial API Call ---
logger.info(f"Sending {len(messages)} messages to OpenAI model {MODEL_ID}.")
try:
response = client.chat.completions.create(
model=MODEL_ID,
messages=messages,
tools=tools_list_openai,
tool_choice="auto", # Let model decide when to call functions
temperature=0.7,
max_tokens=1500
)
response_message = response.choices[0].message
finish_reason = response.choices[0].finish_reason
except openai.APIError as e: logger.error(f"OpenAI API Error: {e.status_code} - {e.response}"); return f"AI service error (Code: {e.status_code}). Try again."
except openai.APITimeoutError: logger.error("OpenAI timed out."); return "AI service request timed out. Try again."
except openai.APIConnectionError as e: logger.error(f"OpenAI Connection Error: {e}"); return "Cannot connect to AI service."
except openai.RateLimitError: logger.error("OpenAI Rate Limit Exceeded."); return "AI service busy. Try again shortly."
except openai.AuthenticationError: logger.error("OpenAI Authentication Error. Check API Key."); return "AI Authentication failed. Please check configuration."
except Exception as e: logger.exception(f"Unexpected error during OpenAI API call: {e}"); return "Oh dear, something unexpected happened on my end. Let's pause and retry?"
# --- Process the response ---
tool_calls = response_message.tool_calls
# Store user message (already added to 'messages' list for API call)
add_chat_message(user_id, "user", user_input)
# Store the initial assistant message (might contain text and/or tool calls)
assistant_message_for_db = {"content": response_message.content}
if tool_calls:
# Convert ToolCall objects to dictionaries for JSON serialization
assistant_message_for_db['tool_calls'] = [tc.model_dump() for tc in tool_calls]
add_chat_message(user_id, "assistant", assistant_message_for_db)
# --- Handle Tool Calls if any ---
if tool_calls:
logger.info(f"OpenAI requested tool call(s): {[tc.function.name for tc in tool_calls]}")
messages.append(response_message) # Add assistant's msg with tool_calls to local list for next API call
available_functions = {
"generate_document_template": generate_document_template,
"create_personalized_routine": create_personalized_routine,
"analyze_resume": analyze_resume,
"analyze_portfolio": analyze_portfolio,
"extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume,
"search_jobs_courses_skills": search_web_serper,
}
# Execute functions and gather results
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions.get(function_name)
tool_call_id = tool_call.id
function_response_content = None # Initialize
try:
function_args = json.loads(tool_call.function.arguments)
if function_to_call:
# Special handling before calling
if function_name == "analyze_resume":
if 'career_goal' not in function_args: function_args['career_goal'] = career_goal
save_user_resume(user_id, function_args.get('resume_text', ''))
elif function_name == "analyze_portfolio":
if 'career_goal' not in function_args: function_args['career_goal'] = career_goal
save_user_portfolio(user_id, function_args.get('portfolio_url', ''), function_args.get('portfolio_description', ''))
elif function_name == "search_jobs_courses_skills":
if 'location' not in function_args or not function_args['location']:
function_args['location'] = location if location != 'your area' else None
logger.info(f"Calling function '{function_name}' with args: {function_args}")
# Functions return JSON strings
function_response_content = function_to_call(**function_args)
logger.info(f"Function '{function_name}' returned: {function_response_content[:200]}...")
else:
logger.warning(f"Function {function_name} not implemented.")
function_response_content = json.dumps({"error": f"Tool '{function_name}' not available."})
except json.JSONDecodeError as e:
logger.error(f"Error decoding args for {function_name}: {tool_call.function.arguments} - {e}")
function_response_content = json.dumps({"error": f"Invalid arguments received for tool '{function_name}'."})
except TypeError as e:
logger.error(f"Argument mismatch for function {function_name}. Args: {function_args}, Error: {e}")
function_response_content = json.dumps({"error": f"Internal error: Tool '{function_name}' called with incorrect arguments."})
except Exception as e:
logger.exception(f"Error executing function {function_name}: {e}")
function_response_content = json.dumps({"error": f"Sorry, I encountered an error while trying to use the '{function_name}' tool."})
# Append tool response to messages list for API
messages.append({
"tool_call_id": tool_call_id,
"role": "tool",
"content": function_response_content, # Content is the JSON string result
})
# Store tool response in DB
add_chat_message(user_id, "tool", {"tool_call_id": tool_call_id, "content": function_response_content})
# --- Make the second API Call with tool results ---
logger.info(f"Sending {len(messages)} messages to OpenAI (incl. tool results).")
try:
second_response = client.chat.completions.create(
model=MODEL_ID,
messages=messages, # Send history including system, user, assistant tool_call, and tool responses
temperature=0.7,
max_tokens=1500
)
final_response_text = second_response.choices[0].message.content
logger.info("Received final response after tool calls.")
# Store final assistant text response
add_chat_message(user_id, "assistant", {"content": final_response_text})
return final_response_text
except openai.APIError as e: logger.error(f"OpenAI API Error on second call: {e.status_code} - {e.response}"); return f"AI service error processing tool results (Code: {e.status_code})."
except openai.RateLimitError: logger.error("OpenAI Rate Limit Exceeded on second call."); return "AI service busy processing results. Try again shortly."
except Exception as e: logger.exception(f"Unexpected error during second OpenAI call: {e}"); return "Oh dear, something went wrong while processing the tool's results. Could we try that step again?"
else: # No tool calls were made
logger.info("No tool calls requested by OpenAI.")
final_response_text = response_message.content
# Assistant message already stored above
if not final_response_text:
final_response_text = "Okay, consider it done. How else can I assist you?" # Fallback if content is empty
return final_response_text
except Exception as e:
logger.exception(f"Critical error in get_ai_response: {e}")
return "A critical error occurred. Please try again later."
# --- Recommendation Generation (Simple version - unchanged) ---
def gen_recommendations_simple(user_id):
# (Identical to v3)
logger.info(f"Generating simple recommendations for user {user_id}")
profile = get_user_profile(user_id); recs = []
goal = profile.get('career_goal', '').lower(); emotion = profile.get('current_emotion', '').lower()
if 'job' in goal or 'internship' in goal: recs.append({"title": "Refine Resume", "description": f"Tailor your resume for '{goal}' roles. Use keywords from job descriptions.", "priority": "High", "action_type": "Job Application"}); recs.append({"title": "Practice Interviewing", "description": "Use the STAR method to prepare answers for common behavioral questions.", "priority": "Medium", "action_type": "Skill Building"}); recs.append({"title": "Network Actively", "description": f"Connect with people in '{profile.get('industry', 'your')}' industry on LinkedIn or attend virtual events.", "priority": "Medium", "action_type": "Networking"})
if 'skill' in goal: recs.append({"title": "Identify Learning Resources", "description": f"Find online courses (Coursera, Udemy, edX) or tutorials for the skills needed for '{goal}'.", "priority": "High", "action_type": "Skill Building"}); recs.append({"title": "Start a Small Project", "description": f"Apply newly learned skills in a personal project to build portfolio evidence.", "priority": "Medium", "action_type": "Skill Building"})
if emotion in ["anxious", "overwhelmed", "stuck", "unmotivated", "discouraged"]: recs.append({"title": "Focus on Small Wins", "description": "Break down larger tasks into very small, achievable steps. Celebrate completing them!", "priority": "High", "action_type": "Wellbeing"}); recs.append({"title": "Schedule Breaks", "description": "Ensure you take regular short breaks to avoid burnout. Step away from the screen.", "priority": "Medium", "action_type": "Wellbeing"})
if recs:
current_recs = profile.get('recommendations', []); pending_titles = {r['recommendation'].get('title') for r in current_recs if r.get('status') == 'pending'}; new_recs_to_add = [r for r in recs if r.get('title') not in pending_titles]
for rec in new_recs_to_add[:3]: add_recommendation_to_user(user_id, rec)
return
# --- Chart and Visualization Functions (Identical to v3) ---
# (create_emotion_chart, create_progress_chart, create_routine_completion_gauge, create_skill_radar_chart functions are identical to v3)
def create_emotion_chart(user_id):
user_profile = get_user_profile(user_id); records = user_profile.get('daily_emotions', [])
if not records: fig = go.Figure(); fig.add_annotation(text="No emotion data yet. How are you feeling today?", showarrow=False); fig.update_layout(title="Your Emotional Journey"); return fig
vals = {"Unmotivated": 1, "Discouraged": 1.5, "Stuck": 2, "Anxious": 2.5, "Confused": 3, "Overwhelmed": 3.5, "Hopeful": 4.5, "Focused": 5, "Excited": 6}
dates = [datetime.fromisoformat(r['date']) for r in records]; scores = [vals.get(r['emotion'], 3) for r in records]; names = [r['emotion'] for r in records]
df = pd.DataFrame({'Date': dates, 'Score': scores, 'Emotion': names}).sort_values('Date')
fig = px.line(df, x='Date', y='Score', markers=True, labels={"Score": "State"}, title="Your Emotional Journey")
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}<extra></extra>', text=df['Emotion']); fig.update_yaxes(tickvals=list(vals.values()), ticktext=list(vals.keys())); return fig
def create_progress_chart(user_id):
user_profile = get_user_profile(user_id); tasks = user_profile.get('completed_tasks', [])
if not tasks: fig = go.Figure(); fig.add_annotation(text="No tasks completed yet. Let's add one!", showarrow=False); fig.update_layout(title="Progress Points"); return fig
tasks.sort(key=lambda x: datetime.fromisoformat(x['date']))
task_dates = {}
for task in tasks:
task_date_str = datetime.fromisoformat(task['date']).strftime('%Y-%m-%d')
pts = task.get('points', random.randint(10, 25))
if task_date_str not in task_dates: task_dates[task_date_str] = {'date': datetime.fromisoformat(task['date']).date(), 'points': 0, 'tasks': []}
task_dates[task_date_str]['points'] += pts
task_dates[task_date_str]['tasks'].append(task['task'])
sorted_dates = sorted(task_dates.keys()); cumulative_points = 0; chart_dates, chart_points, chart_tasks = [], [], []
for date_str in sorted_dates:
day_data = task_dates[date_str]; cumulative_points += day_data['points']; chart_dates.append(day_data['date']); chart_points.append(cumulative_points); chart_tasks.append("<br>".join(day_data['tasks']))
if not chart_dates: fig = go.Figure(); fig.add_annotation(text="Error processing task data.", showarrow=False); fig.update_layout(title="Progress Points"); return fig
df = pd.DataFrame({'Date': chart_dates, 'Points': chart_points, 'Tasks': chart_tasks})
fig = px.line(df, x='Date', y='Points', markers=True, title="Progress Journey"); fig.update_traces(hovertemplate='%{x|%Y-%m-%d}<br>Points: %{y}<br>Tasks:<br>%{text}<extra></extra>', text=df['Tasks']); return fig
def create_routine_completion_gauge(user_id):
user_profile = get_user_profile(user_id); routines = user_profile.get('routine_history', [])
if not routines: fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Active Routine"})); fig.add_annotation(text="No routine active. Create one?", showarrow=False); return fig
latest = routines[0]; completion = latest.get('completion', 0); name = latest.get('routine', {}).get('name', 'Routine')
fig = go.Figure(go.Indicator(mode="gauge+number", value=completion, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': f"{name} (%)"}, gauge={'axis': {'range': [0, 100]}, 'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}], 'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}})); return fig
def create_skill_radar_chart(user_id):
logger.info(f"Creating skill chart for {user_id}"); user_profile = get_user_profile(user_id); path = user_profile.get('resume_path')
if not path or not os.path.exists(path): logger.warning("No resume found for skill chart."); fig = go.Figure(); fig.add_annotation(text="Upload or Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
try:
with open(path, 'r', encoding='utf-8') as f: text = f.read()
skills_json_str = extract_and_rate_skills_from_resume(resume_text=text) # Returns JSON string
skills_data = json.loads(skills_json_str) # Parse JSON string
if 'skills' in skills_data and skills_data['skills']:
skills = skills_data['skills'][:8]; cats = [s['name'] for s in skills]; vals = [s['score'] for s in skills]
if len(cats) < 3: fig = go.Figure(); fig.add_annotation(text="Need at least 3 skills identified for radar chart.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
if len(cats) > 2: cats.append(cats[0]); vals.append(vals[0])
fig = go.Figure(); fig.add_trace(go.Scatterpolar(r=vals, theta=cats, fill='toself', name='Skills', hovertemplate='Skill: %{theta}<br>Score: %{r}<extra></extra>'))
fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 10], showline=False, ticksuffix=' pts')), showlegend=False, title="Skill Assessment (from Resume)")
logger.info(f"Created radar chart with {len(skills)} skills."); return fig
else: logger.warning("No skills extracted for chart."); fig = go.Figure(); fig.add_annotation(text="No skills extracted from resume yet.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
except Exception as e: logger.exception(f"Error creating skill chart: {e}"); fig = go.Figure(); fig.add_annotation(text="Error analyzing skills.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
# --- Gradio Interface Components (Mostly identical to v3, ensure compatibility) ---
def create_interface():
"""Create the Gradio interface for Aishura v4 (OpenAI)"""
session_user_id = str(uuid.uuid4())
logger.info(f"Initializing Gradio interface v4 for session user ID: {session_user_id}")
get_user_profile(session_user_id) # Initialize profile
# --- Event Handlers (Adapted slightly if needed) ---
def welcome(name, location, emotion, goal, industry, exp_level, work_style):
# (Logic identical to v3 welcome handler)
logger.info(f"Welcome v4: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}', industry='{industry}', exp='{exp_level}', work='{work_style}'")
if not all([name, location, emotion, goal]): return ("Please fill in your Name, Location, Emotion, and Goal to get started!", gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(), gr.update(), gr.update())
cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal
profile_updates = {"name": name, "location": location, "career_goal": cleaned_goal, "industry": industry, "experience_level": exp_level, "preferred_work_style": work_style}
update_user_profile(session_user_id, profile_updates)
add_emotion_record(session_user_id, emotion)
initial_input = f"Hi Aishura! I'm {name} from {location}. I'm focusing on '{cleaned_goal}' in the {industry} industry ({exp_level}, preferring {work_style} work). Right now, I'm feeling {emotion}. Can you help me get started?"
ai_response = get_ai_response(session_user_id, initial_input) # Calls the OpenAI version
# Convert DB history (OpenAI format) to Gradio format [[user, assistant], ...]
# For initial display, it's just the first exchange
initial_chat_display = [[initial_input, ai_response]]
e_fig, p_fig, r_fig, s_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id), create_skill_radar_chart(session_user_id)
gen_recommendations_simple(session_user_id) # Generate initial recommendations
recs_md = display_recommendations(session_user_id)
return (gr.update(value=initial_chat_display), gr.update(visible=False), gr.update(visible=True), gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=r_fig), gr.update(value=s_fig), gr.update(value=recs_md))
def chat_submit(message_text, history_list_list):
# (Logic identical to v3 chat_submit handler)
logger.info(f"Chat submit v4 for {session_user_id}: '{message_text[:50]}...'")
if not message_text: yield history_list_list, gr.update() # No change if empty message
else:
history_list_list.append([message_text, None])
yield history_list_list, gr.update() # Update UI with user message, clear textbox handled by .then()
ai_response_text = get_ai_response(session_user_id, message_text) # Calls OpenAI version
history_list_list[-1][1] = ai_response_text # Update assistant response
gen_recommendations_simple(session_user_id) # Generate recommendations
recs_md = display_recommendations(session_user_id)
yield history_list_list, gr.update(value=recs_md) # Update UI with assistant response and recommendations
# --- Tool Interface Handlers (Call implementations directly) ---
def generate_template_interface_handler(doc_type, career_field, experience):
logger.info(f"Manual Template UI v4: type='{doc_type}'")
json_str = generate_document_template(doc_type, career_field, experience)
try: return json.loads(json_str).get('template_markdown', "Error.")
except: return "Error displaying template."
def create_routine_interface_handler(emotion, goal, time_available, days):
logger.info(f"Manual Routine UI v4: emo='{emotion}', goal='{goal}'")
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
json_str = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days))
try:
data = json.loads(json_str)
if "error" in data: return f"Error: {data['error']}", gr.update()
add_routine_to_user(session_user_id, data) # Save the dict structure
md = f"# {data.get('name', 'Your Routine')}\n\n"
md += f"_{data.get('support_message', data.get('description', ''))}_\n\n---\n\n"
for day in data.get('daily_tasks', []):
md += f"## Day {day.get('day', '?')}\n"; tasks = day.get('tasks', [])
if not tasks: md += "- Rest day or catch-up.\n"
else:
for task in tasks: md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} min)\n - _{task.get('description', '...')}_\n"
md += "\n"
gauge = create_routine_completion_gauge(session_user_id)
return md, gr.update(value=gauge)
except Exception as e: logger.exception("Error displaying routine"); return f"Error displaying routine: {e}", gr.update()
def analyze_resume_interface_handler(resume_file):
# (Logic identical to v3, calls the updated tool function)
logger.info(f"Manual Resume Analysis UI v4: file={resume_file}")
if resume_file is None: return "Please upload a resume file.", gr.update(value=None), gr.update(value=None)
try:
with open(resume_file.name, 'r', encoding='utf-8') as f: resume_text = f.read()
logger.info(f"Read {len(resume_text)} characters from uploaded resume.")
except Exception as e: logger.error(f"Error reading uploaded resume file: {e}"); return f"Error reading file: {e}", gr.update(value=None), gr.update(value=None)
if not resume_text: return "Resume file seems empty.", gr.update(value=None), gr.update(value=None)
profile = get_user_profile(session_user_id); goal = profile.get('career_goal', 'Not specified')
resume_path = save_user_resume(session_user_id, resume_text)
if not resume_path: return "Could not save resume file.", gr.update(value=None), gr.update(value=None)
analysis_json_str = analyze_resume(resume_text, goal) # Returns JSON string
try:
analysis_result = json.loads(analysis_json_str); analysis = analysis_result.get('analysis', {})
md = f"## Resume Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n\n"; md += "**Strengths Identified:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["None identified."])]) + "\n\n"; md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["None identified."])]) + "\n\n"; md += f"**Format Feedback:** {analysis.get('format_feedback', 'N/A')}\n"; md += f"**Content Alignment:** {analysis.get('content_feedback', 'N/A')}\n"; md += f"**Suggested Keywords:** {', '.join(analysis.get('keyword_suggestions', ['N/A']))}\n\n"; md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])
skill_fig = create_skill_radar_chart(session_user_id)
return md, gr.update(value=skill_fig), gr.update(value=resume_path)
except Exception as e: logger.exception("Error formatting resume analysis results."); return "Error displaying analysis results.", gr.update(value=None), gr.update(value=None)
def analyze_portfolio_interface_handler(portfolio_url, portfolio_description):
# (Logic identical to v3, calls the updated tool function)
logger.info(f"Manual Portfolio Analysis UI v4: url='{portfolio_url}'")
if not portfolio_description: return "Please provide a description of your portfolio."
profile = get_user_profile(session_user_id); goal = profile.get('career_goal', 'Not specified')
portfolio_path = save_user_portfolio(session_user_id, portfolio_url, portfolio_description)
if not portfolio_path: return "Could not save portfolio details."
analysis_json_str = analyze_portfolio(portfolio_description, goal, portfolio_url) # Returns JSON string
try:
analysis_result = json.loads(analysis_json_str); analysis = analysis_result.get('analysis', {})
md = f"## Portfolio Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n"; md += f"**URL:** {portfolio_url}\n\n" if portfolio_url else "\n"; md += f"**Alignment with Goal:** {analysis.get('alignment_with_goal', 'N/A')}\n\n"; md += "**Strengths Based on Description:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["N/A"])]) + "\n\n"; md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["N/A"])]) + "\n\n"; md += f"**Presentation Feedback:** {analysis.get('presentation_feedback', 'N/A')}\n\n"; md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])
return md
except Exception as e: logger.exception("Error formatting portfolio analysis results."); return "Error displaying analysis results."
# --- Progress Tracking Handlers (Identical to v3) ---
def complete_task_handler(task_name):
logger.info(f"Complete Task UI v4 for {session_user_id}: task='{task_name}'")
if not task_name: return ("Please enter the task you completed.", "", gr.update(), gr.update(), gr.update())
updated_profile = add_task_to_user(session_user_id, task_name)
if updated_profile and updated_profile.get('routine_history'):
db = load_user_database(); profile = db.get('users', {}).get(session_user_id)
if profile and profile.get('routine_history'):
latest_routine = profile['routine_history'][0]; increment = random.randint(5, 15)
latest_routine['completion'] = min(100, latest_routine.get('completion', 0) + increment); save_user_database(db)
e_fig, p_fig, g_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id)
return (f"Awesome job completing '{task_name}'! Keep up the great work!", "", gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=g_fig))
def update_emotion_handler(emotion):
logger.info(f"Update Emotion UI v4 for {session_user_id}: emotion='{emotion}'")
if not emotion: return "Please select how you're feeling.", gr.update()
add_emotion_record(session_user_id, emotion)
e_fig = create_emotion_chart(session_user_id)
cleaned_display = emotion.split(" ")[0] if " " in emotion else emotion
return f"Got it. Acknowledging how you feel ({cleaned_display}) is a great step.", gr.update(value=e_fig)
def display_recommendations(current_user_id):
# (Identical to v3)
logger.info(f"Displaying recommendations v4 for {current_user_id}")
profile = get_user_profile(current_user_id); recs = profile.get('recommendations', [])
if not recs: return "Chat with me about your goals and challenges, and I can suggest some next steps! 😊"
pending_recs = [r for r in recs if r.get('status') == 'pending'][:5]
if not pending_recs: return "No pending recommendations right now. Great job, or let's chat to find new ones!"
md = "### ✨ Here are a few things we could focus on:\n\n"
for i, entry in enumerate(pending_recs, 1):
rec = entry.get('recommendation', {})
md += f"**{i}. {rec.get('title', 'Recommendation')}**\n"; md += f" - {rec.get('description', 'No description.')}\n"; md += f" - *Priority: {rec.get('priority', 'Medium')} | Type: {rec.get('action_type', 'General')}*\n---\n"
return md
# --- Build Gradio Interface (Structure identical to v3) ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue", font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]), title="Aishura v4 (OpenAI)") as app:
gr.Markdown("# Aishura - Your Empathetic AI Career Copilot πŸš€")
gr.Markdown("_Powered by OpenAI GPT-4o & Real-Time Data_") # Updated subtitle
# Welcome Screen (Identical structure)
with gr.Group(visible=True) as welcome_group:
gr.Markdown("## Welcome! Let's personalize your journey.")
gr.Markdown("Tell me a bit about yourself so I can help you better.")
with gr.Row():
with gr.Column(): name_input = gr.Textbox(label="What's your first name?"); location_input = gr.Textbox(label="Where are you located (City, Country)?", placeholder="e.g., London, UK"); industry_input = gr.Textbox(label="What's your primary industry or field?", placeholder="e.g., Technology, Healthcare, Finance")
with gr.Column(): emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling right now?"); goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main career goal currently?"); exp_level_dropdown = gr.Dropdown(choices=["Student", "Entry-Level (0-2 yrs)", "Mid-Level (3-7 yrs)", "Senior-Level (8+ yrs)", "Executive"], label="What's your experience level?"); work_style_dropdown = gr.Dropdown(choices=["On-site", "Hybrid", "Remote", "Any"], label="Preferred work style?", value="Any")
welcome_button = gr.Button("✨ Start My Journey with Aishura ✨", variant="primary"); welcome_output = gr.Markdown()
# Main Interface (Identical structure)
with gr.Group(visible=False) as main_interface:
with gr.Tabs():
# Chat Tab
with gr.TabItem("πŸ’¬ Chat with Aishura"):
with gr.Row():
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(label="Aishura", height=600, show_copy_button=True, bubble_full_width=False, avatar_images=(None, "https://img.icons8.com/external-those-icons-lineal-color-those-icons/96/external-AI-artificial-intelligence-those-icons-lineal-color-those-icons-9.png"))
msg_textbox = gr.Textbox(show_label=False, placeholder="Type your message here...", container=False, scale=1)
with gr.Column(scale=1):
gr.Markdown("### Recommendations"); recommendation_output = gr.Markdown("Loading recommendations...")
refresh_recs_button = gr.Button("πŸ”„ Refresh Recs"); gr.Markdown("---"); gr.Markdown("### Quick Actions")
# Analysis & Tools Tab
with gr.TabItem("πŸ› οΈ Analyze & Tools"):
with gr.Tabs():
with gr.TabItem("πŸ“„ Resume Hub"):
gr.Markdown("### Analyze Your Resume"); gr.Markdown("Upload your resume (TXT or PDF - text readable) for analysis and skill identification.")
resume_file_input = gr.File(label="Upload Resume (.txt, .pdf)", file_types=['.txt', '.pdf'])
resume_path_display = gr.Textbox(label="Current Resume File", interactive=False)
analyze_resume_button = gr.Button("Analyze Uploaded Resume", variant="primary")
resume_analysis_output = gr.Markdown("Analysis will appear here...")
gr.Markdown("---"); gr.Markdown("### Generate Document Templates")
doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Document Type"); doc_field_input = gr.Textbox(label="Target Career Field (Optional)", placeholder="e.g., Software Engineering"); doc_exp_dropdown = gr.Dropdown(choices=["Student", "Entry-Level", "Mid-Level", "Senior-Level"], label="Experience Level")
generate_template_button = gr.Button("Generate Template"); template_output_md = gr.Markdown("Template will appear here...")
with gr.TabItem("🎨 Portfolio Hub"):
gr.Markdown("### Analyze Your Portfolio")
portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)", placeholder="https://yourportfolio.com"); portfolio_desc_input = gr.Textbox(label="Describe your portfolio's content and purpose", lines=5, placeholder="e.g., Collection of web development projects...")
analyze_portfolio_button = gr.Button("Analyze Portfolio Info", variant="primary"); portfolio_analysis_output = gr.Markdown("Analysis will appear here...")
with gr.TabItem("πŸ“… Routine Builder"):
gr.Markdown("### Create a Personalized Routine"); gr.Markdown("Feeling stuck? Let's build a manageable routine.")
routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?"); profile = get_user_profile(session_user_id); routine_goal_input = gr.Textbox(label="Main Goal for this Routine", value=profile.get('career_goal', ''))
routine_time_slider = gr.Slider(15, 120, 45, step=15, label="Minutes you can dedicate per day"); routine_days_slider = gr.Slider(3, 21, 7, step=1, label="Length of routine (days)")
create_routine_button = gr.Button("Create My Routine", variant="primary"); routine_output_md = gr.Markdown("Your personalized routine will appear here...")
# Progress Tab
with gr.TabItem("πŸ“ˆ Track Your Journey"):
gr.Markdown("## Your Progress Dashboard")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βœ… Log Completed Task"); task_input = gr.Textbox(label="What did you accomplish?", placeholder="e.g., Updated resume, Applied for job X...")
complete_button = gr.Button("Log Task", variant="primary"); task_output = gr.Markdown()
gr.Markdown("---"); gr.Markdown("### 😊 How are you feeling now?")
new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="Select current emotion"); emotion_button = gr.Button("Update Emotion"); emotion_output = gr.Markdown()
with gr.Column(scale=2):
gr.Markdown("### Emotional Journey"); emotion_chart_output = gr.Plot(label="Emotion Trend")
gr.Markdown("### Active Routine Progress"); routine_gauge_output = gr.Plot(label="Routine Completion")
with gr.Row():
with gr.Column(scale=1): gr.Markdown("### Progress Points"); progress_chart_output = gr.Plot(label="Progress Points Over Time")
with gr.Column(scale=1): gr.Markdown("### Skills Assessment (from Resume)"); skill_radar_chart_output = gr.Plot(label="Skills Radar")
# --- Event Wiring (Identical logic, calls updated functions) ---
welcome_button.click(fn=welcome, inputs=[name_input, location_input, emotion_dropdown, goal_dropdown, industry_input, exp_level_dropdown, work_style_dropdown], outputs=[chatbot_display, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output, recommendation_output])
msg_textbox.submit(fn=chat_submit, inputs=[msg_textbox, chatbot_display], outputs=[chatbot_display, recommendation_output]).then(lambda: gr.update(value=""), outputs=[msg_textbox])
refresh_recs_button.click(fn=lambda: display_recommendations(session_user_id), outputs=[recommendation_output])
analyze_resume_button.click(fn=analyze_resume_interface_handler, inputs=[resume_file_input], outputs=[resume_analysis_output, skill_radar_chart_output, resume_path_display])
analyze_portfolio_button.click(fn=analyze_portfolio_interface_handler, inputs=[portfolio_url_input, portfolio_desc_input], outputs=[portfolio_analysis_output])
generate_template_button.click(fn=generate_template_interface_handler, inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown], outputs=[template_output_md])
create_routine_button.click(fn=create_routine_interface_handler, inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider], outputs=[routine_output_md, routine_gauge_output])
complete_button.click(fn=complete_task_handler, inputs=[task_input], outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output])
emotion_button.click(fn=update_emotion_handler, inputs=[new_emotion_dropdown], outputs=[emotion_output, emotion_chart_output])
return app
# --- Main Execution ---
if __name__ == "__main__":
print("\n--- Aishura v4 (OpenAI) Configuration Check ---")
if not OPENAI_API_KEY: print("⚠️ WARNING: OPENAI_API_KEY not found. AI features DISABLED.")
else: print("βœ… OPENAI_API_KEY found.")
if not SERPER_API_KEY: print("⚠️ WARNING: SERPER_API_KEY not found. Live web search DISABLED.")
else: print("βœ… SERPER_API_KEY found.")
if not client: print("❌ ERROR: OpenAI client failed to initialize. AI features DISABLED.")
else: print(f"βœ… OpenAI client initialized for model '{MODEL_ID}'.")
print("-------------------------------------------\n")
logger.info("Starting Aishura v4 (OpenAI) Gradio application...")
aishura_app = create_interface()
aishura_app.launch(share=False, debug=False)
logger.info("Aishura Gradio application stopped.")