import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objects as go import plotly.express as px from datetime import datetime, timedelta import random import json import os import time import requests from typing import List, Dict, Any, Optional import logging from dotenv import load_dotenv import pytz import uuid import re import base64 from io import BytesIO from PIL import Image # Import the updated Google GenAI SDK from google import genai from google.genai import types # Load environment variables load_dotenv() # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Configure API keys GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "your-api-key") SERPER_API_KEY = os.getenv("SERPER_API_KEY", "your-serper-api-key") # Configure Google GenAI genai.configure(api_key=GOOGLE_API_KEY) # Init the client client = genai.Client() # Model configuration - using Gemini latest model MODEL_ID = "gemini-2.0-flash-001" # Constants for global app EMOTIONS = ["Unmotivated", "Anxious", "Confused", "Excited", "Overwhelmed", "Discouraged"] GOAL_TYPES = ["Get a job at a big company", "Find an internship", "Change careers", "Improve skills", "Network better"] USER_DB_PATH = "user_database.json" RESUME_FOLDER = "user_resumes" PORTFOLIO_FOLDER = "user_portfolios" # Ensure folders exist os.makedirs(RESUME_FOLDER, exist_ok=True) os.makedirs(PORTFOLIO_FOLDER, exist_ok=True) # Function declarations for tools get_job_opportunities = types.FunctionDeclaration( name="get_job_opportunities", description="Get relevant job opportunities based on location and career goals", parameters={ "type": "OBJECT", "properties": { "location": { "type": "STRING", "description": "The city or country where the user is located", }, "career_goal": { "type": "STRING", "description": "The user's career goal or job interest", }, "max_results": { "type": "NUMBER", "description": "Maximum number of job opportunities to return", }, }, "required": ["location", "career_goal"], }, ) generate_document = types.FunctionDeclaration( name="generate_document_template", description="Generate a document template for job applications", parameters={ "type": "OBJECT", "properties": { "document_type": { "type": "STRING", "description": "Type of document to generate (Resume, Cover Letter, Self-introduction)", }, "career_field": { "type": "STRING", "description": "The career field or industry the document is for", }, "experience_level": { "type": "STRING", "description": "User's experience level (Entry, Mid, Senior)", }, }, "required": ["document_type"], }, ) create_routine = types.FunctionDeclaration( name="create_personalized_routine", description="Create a personalized career development routine", parameters={ "type": "OBJECT", "properties": { "emotion": { "type": "STRING", "description": "User's current emotional state", }, "goal": { "type": "STRING", "description": "User's career goal", }, "available_time_minutes": { "type": "NUMBER", "description": "Available time in minutes per day", }, "routine_length_days": { "type": "NUMBER", "description": "Length of routine in days", }, }, "required": ["emotion", "goal"], }, ) analyze_resume = types.FunctionDeclaration( name="analyze_resume", description="Analyze a user's resume and provide feedback", parameters={ "type": "OBJECT", "properties": { "resume_text": { "type": "STRING", "description": "The full text of the user's resume", }, "career_goal": { "type": "STRING", "description": "The user's career goal or job interest", }, }, "required": ["resume_text"], }, ) analyze_portfolio = types.FunctionDeclaration( name="analyze_portfolio", description="Analyze a user's portfolio and provide feedback", parameters={ "type": "OBJECT", "properties": { "portfolio_url": { "type": "STRING", "description": "URL to the user's portfolio", }, "portfolio_description": { "type": "STRING", "description": "Description of the portfolio content", }, "career_goal": { "type": "STRING", "description": "The user's career goal or job interest", }, }, "required": ["portfolio_description"], }, ) # Combine tools job_tool = types.Tool(function_declarations=[get_job_opportunities]) document_tool = types.Tool(function_declarations=[generate_document]) routine_tool = types.Tool(function_declarations=[create_routine]) resume_tool = types.Tool(function_declarations=[analyze_resume]) portfolio_tool = types.Tool(function_declarations=[analyze_portfolio]) # User database functions def load_user_database(): """Load user database from JSON file or create if it doesn't exist""" try: with open(USER_DB_PATH, 'r') as file: return json.load(file) except (FileNotFoundError, json.JSONDecodeError): # Initialize empty database db = {'users': {}} save_user_database(db) return db def save_user_database(db): """Save user database to JSON file""" with open(USER_DB_PATH, 'w') as file: json.dump(db, file, indent=4) def get_user_profile(user_id): """Get user profile from database or create new one""" db = load_user_database() if user_id not in db['users']: db['users'][user_id] = { "user_id": user_id, "name": "", "location": "", "current_emotion": "", "career_goal": "", "progress_points": 0, "completed_tasks": [], "upcoming_events": [], "routine_history": [], "daily_emotions": [], "resume_path": "", "portfolio_path": "", "recommendations": [], "chat_history": [], "joined_date": datetime.now().strftime("%Y-%m-%d") } save_user_database(db) return db['users'][user_id] def update_user_profile(user_id, updates): """Update user profile with new information""" db = load_user_database() if user_id in db['users']: for key, value in updates.items(): db['users'][user_id][key] = value save_user_database(db) return db['users'][user_id] def add_task_to_user(user_id, task): """Add a new task to user's completed tasks""" db = load_user_database() if user_id in db['users']: if 'completed_tasks' not in db['users'][user_id]: db['users'][user_id]['completed_tasks'] = [] task_with_date = { "task": task, "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } db['users'][user_id]['completed_tasks'].append(task_with_date) db['users'][user_id]['progress_points'] += random.randint(10, 25) save_user_database(db) return db['users'][user_id] def add_emotion_record(user_id, emotion): """Add a new emotion record to user's daily emotions""" db = load_user_database() if user_id in db['users']: if 'daily_emotions' not in db['users'][user_id]: db['users'][user_id]['daily_emotions'] = [] emotion_record = { "emotion": emotion, "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } db['users'][user_id]['daily_emotions'].append(emotion_record) db['users'][user_id]['current_emotion'] = emotion save_user_database(db) return db['users'][user_id] def add_routine_to_user(user_id, routine): """Add a new routine to user's routine history""" db = load_user_database() if user_id in db['users']: if 'routine_history' not in db['users'][user_id]: db['users'][user_id]['routine_history'] = [] routine_with_date = { "routine": routine, "start_date": datetime.now().strftime("%Y-%m-%d"), "end_date": (datetime.now() + timedelta(days=routine.get('days', 7))).strftime("%Y-%m-%d"), "completion": 0 } db['users'][user_id]['routine_history'].append(routine_with_date) save_user_database(db) return db['users'][user_id] def save_user_resume(user_id, resume_text): """Save user's resume to file and update profile""" # Create filename filename = f"{user_id}_resume.txt" filepath = os.path.join(RESUME_FOLDER, filename) # Save resume text to file with open(filepath, 'w') as file: file.write(resume_text) # Update user profile update_user_profile(user_id, {"resume_path": filepath}) return filepath def save_user_portfolio(user_id, portfolio_content): """Save user's portfolio info to file and update profile""" # Create filename filename = f"{user_id}_portfolio.json" filepath = os.path.join(PORTFOLIO_FOLDER, filename) # Save portfolio content to file with open(filepath, 'w') as file: json.dump(portfolio_content, file, indent=4) # Update user profile update_user_profile(user_id, {"portfolio_path": filepath}) return filepath def add_recommendation_to_user(user_id, recommendation): """Add a new recommendation to user's recommendations list""" db = load_user_database() if user_id in db['users']: if 'recommendations' not in db['users'][user_id]: db['users'][user_id]['recommendations'] = [] recommendation_with_date = { "recommendation": recommendation, "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "status": "pending" # pending, completed, dismissed } db['users'][user_id]['recommendations'].append(recommendation_with_date) save_user_database(db) return db['users'][user_id] def add_chat_message(user_id, role, message): """Add a message to the user's chat history""" db = load_user_database() if user_id in db['users']: if 'chat_history' not in db['users'][user_id]: db['users'][user_id]['chat_history'] = [] chat_message = { "role": role, # user or assistant "message": message, "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } db['users'][user_id]['chat_history'].append(chat_message) save_user_database(db) return db['users'][user_id] # API Helper Functions def search_jobs_with_serper(query, location, max_results=5): """Search for job opportunities using Serper API""" try: headers = { 'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json' } params = { 'q': f"{query} jobs in {location}", 'num': max_results } response = requests.get( 'https://serper.dev/search', headers=headers, params=params ) if response.status_code == 200: data = response.json() # Extract job listings from search results job_results = [] # Process organic results if 'organic' in data: for item in data['organic']: if 'title' in item and 'link' in item and 'snippet' in item: # Check if it looks like a job listing if any(keyword in item['title'].lower() for keyword in ['job', 'career', 'position', 'hiring', 'work']): job_results.append({ 'title': item['title'], 'company': extract_company_from_title(item['title']), 'description': item['snippet'], 'link': item['link'], 'location': location, 'date_posted': 'Recent' # Serper doesn't provide this directly }) return job_results else: logger.error(f"Error from Serper API: {response.status_code} - {response.text}") return [] except Exception as e: logger.error(f"Exception in search_jobs_with_serper: {str(e)}") return [] def extract_company_from_title(title): """Extract company name from job title if possible""" # This is a simple heuristic and can be improved if ' at ' in title: return title.split(' at ')[1].strip() if ' - ' in title: return title.split(' - ')[1].strip() return "Unknown Company" def get_ai_response(user_id, user_input, context=None, generate_recommendations=True): """Get AI response using Google GenAI""" try: user_profile = get_user_profile(user_id) system_instruction = """ You are Aishura, an emotionally intelligent AI career assistant. Your goal is to empathize with the user's emotions and provide realistic information and actionable suggestions. Follow this structure: 1. Recognize and acknowledge the user's emotion 2. Respond with high-empathy message 3. Suggest specific action based on their input 4. Offer document support, job opportunities, or personalized routine Remember to be proactive and preemptive - suggest actions before the user asks. Your goal is to provide end-to-end support for the user's career journey, from emotional support to concrete action. If the user has shared a resume or portfolio, refer to insights from those documents to provide personalized guidance. """ # Build conversation context contents = [] # Add user profile information as context profile_context = f""" User Profile Information: - Name: {user_profile.get('name', '')} - Current emotion: {user_profile.get('current_emotion', '')} - Career goal: {user_profile.get('career_goal', '')} - Location: {user_profile.get('location', '')} """ # Add resume context if available if user_profile.get('resume_path') and os.path.exists(user_profile.get('resume_path')): try: with open(user_profile.get('resume_path'), 'r') as file: resume_text = file.read() profile_context += f"\nUser Resume Summary: The user has shared their resume. They have experience in {resume_text[:100]}..." except Exception as e: logger.error(f"Error reading resume: {str(e)}") # Add portfolio context if available if user_profile.get('portfolio_path') and os.path.exists(user_profile.get('portfolio_path')): try: with open(user_profile.get('portfolio_path'), 'r') as file: portfolio_data = json.load(file) profile_context += f"\nUser Portfolio: The user has shared their portfolio with URL: {portfolio_data.get('url', 'Not provided')}." except Exception as e: logger.error(f"Error reading portfolio: {str(e)}") # Start with context user_context = types.Content( role="user", parts=[types.Part.from_text(profile_context)] ) contents.append(user_context) # Add previous context if provided if context: for msg in context: if msg["role"] == "user": contents.append(types.Content( role="user", parts=[types.Part.from_text(msg["message"])] )) else: contents.append(types.Content( role="model", parts=[types.Part.from_text(msg["message"])] )) # Add current user input contents.append(types.Content( role="user", parts=[types.Part.from_text(user_input)] )) # Configure tools tools = [job_tool, document_tool, routine_tool, resume_tool, portfolio_tool] # Get response response = client.models.generate_content( model=MODEL_ID, contents=contents, system_instruction=system_instruction, tools=tools, generation_config=types.GenerationConfig( temperature=0.7, max_output_tokens=2048, top_p=0.95, top_k=40 ) ) ai_response_text = response.text # Log the message in chat history add_chat_message(user_id, "user", user_input) add_chat_message(user_id, "assistant", ai_response_text) # Generate recommendations if enabled if generate_recommendations: gen_recommendations(user_id, user_input, ai_response_text) return ai_response_text except Exception as e: logger.error(f"Error in get_ai_response: {str(e)}") return "I apologize, but I'm having trouble processing your request right now. Please try again later." def gen_recommendations(user_id, user_input, ai_response): """Generate recommendations based on conversation""" try: user_profile = get_user_profile(user_id) prompt = f""" Based on the following conversation between a user and Aishura (an AI career assistant), generate 1-3 specific, actionable recommendations for the user's next steps in their career journey. User Profile: - Current emotion: {user_profile.get('current_emotion', '')} - Career goal: {user_profile.get('career_goal', '')} - Location: {user_profile.get('location', '')} Recent Conversation: User: {user_input} Aishura: {ai_response} Generate specific, actionable recommendations in JSON format: ```json [ {{ "title": "Brief recommendation title", "description": "Detailed recommendation description", "action_type": "job_search|skill_building|networking|resume|portfolio|interview_prep|other", "priority": "high|medium|low" }} ] ``` Focus on immediate, practical next steps that align with the user's goals and emotional state. """ response = client.models.generate_content( model=MODEL_ID, contents=prompt ) recommendation_text = response.text # Extract JSON from response try: # Find JSON content between ```json and ``` if present if "```json" in recommendation_text and "```" in recommendation_text.split("```json")[1]: json_str = recommendation_text.split("```json")[1].split("```")[0].strip() else: # Otherwise try to find anything that looks like JSON array import re json_match = re.search(r'(\[.*\])', recommendation_text, re.DOTALL) if json_match: json_str = json_match.group(1) else: json_str = recommendation_text recommendations = json.loads(json_str) # Add recommendations to user profile for rec in recommendations: add_recommendation_to_user(user_id, rec) return recommendations except json.JSONDecodeError: logger.error(f"Failed to parse JSON from AI response: {recommendation_text}") return [] except Exception as e: logger.error(f"Error in gen_recommendations: {str(e)}") return [] def create_personalized_routine_with_ai(user_id, emotion, goal, available_time=60, days=7): """Create a personalized routine using AI""" try: user_profile = get_user_profile(user_id) prompt = f""" Create a personalized {days}-day career development routine for a user who is feeling {emotion} and has a goal to {goal}. They have about {available_time} minutes per day to dedicate to this routine. For each day, suggest 1-3 specific tasks that will help them make progress toward their goal while considering their emotional state. For each task provide: 1. Task name 2. Duration in minutes 3. Points value (between 10-50) 4. A brief description of why this task is valuable Format the routine as a JSON object with this structure: ```json {{ "name": "Routine name", "description": "Brief description of the routine", "days": {days}, "daily_tasks": [ {{ "day": 1, "tasks": [ {{ "name": "Task name", "points": 20, "duration": 30, "description": "Why this task is valuable" }} ] }} ] }} ``` """ # Use resume and portfolio info if available if user_profile.get('resume_path') and os.path.exists(user_profile.get('resume_path')): try: with open(user_profile.get('resume_path'), 'r') as file: resume_text = file.read() prompt += f"\n\nTailor the routine based on the user's resume. Here's a summary: {resume_text[:500]}..." except Exception as e: logger.error(f"Error reading resume: {str(e)}") if user_profile.get('portfolio_path') and os.path.exists(user_profile.get('portfolio_path')): try: with open(user_profile.get('portfolio_path'), 'r') as file: portfolio_data = json.load(file) prompt += f"\n\nConsider the user's portfolio when creating the routine. Portfolio URL: {portfolio_data.get('url', 'Not provided')}" except Exception as e: logger.error(f"Error reading portfolio: {str(e)}") response = client.models.generate_content( model=MODEL_ID, contents=prompt ) routine_text = response.text # Extract JSON portion from the response try: # Find JSON content between ```json and ``` if present if "```json" in routine_text and "```" in routine_text.split("```json")[1]: json_str = routine_text.split("```json")[1].split("```")[0].strip() else: # Otherwise try to find anything that looks like JSON import re json_match = re.search(r'(\{.*\})', routine_text, re.DOTALL) if json_match: json_str = json_match.group(1) else: json_str = routine_text routine = json.loads(json_str) # Add to user's routines user_profile = add_routine_to_user(user_id, routine) return routine except json.JSONDecodeError: logger.error(f"Failed to parse JSON from AI response: {routine_text}") # Fallback to a basic routine return generate_basic_routine(emotion, goal, available_time, days) except Exception as e: logger.error(f"Error in create_personalized_routine_with_ai: {str(e)}") # Fallback to a basic routine return generate_basic_routine(emotion, goal, available_time, days) def generate_basic_routine(emotion, goal, available_time=60, days=7): """Generate a basic routine as fallback""" routine_types = { "job_search": [ {"name": "Research target companies", "points": 10, "duration": 20, "description": "Identify potential employers that align with your career goals"}, {"name": "Update LinkedIn profile", "points": 15, "duration": 30, "description": "Keep your professional presence current and compelling"}, {"name": "Practice interview questions", "points": 20, "duration": 45, "description": "Build confidence and prepare for upcoming opportunities"}, {"name": "Reach out to a contact", "points": 25, "duration": 15, "description": "Grow your network and gather industry insights"} ], "skill_building": [ {"name": "Complete one tutorial", "points": 20, "duration": 60, "description": "Develop practical skills in your field"}, {"name": "Read industry article", "points": 10, "duration": 15, "description": "Stay current with trends and developments"}, {"name": "Work on portfolio project", "points": 30, "duration": 90, "description": "Create tangible evidence of your abilities"}, {"name": "Watch expert talk", "points": 15, "duration": 30, "description": "Learn from leaders in your field"} ], "motivation": [ {"name": "Write in gratitude journal", "points": 10, "duration": 10, "description": "Cultivate a positive mindset to enhance motivation"}, {"name": "Set 3 goals for the day", "points": 15, "duration": 15, "description": "Focus your energy on achievable tasks"}, {"name": "Exercise break", "points": 20, "duration": 20, "description": "Boost energy and mood with physical activity"}, {"name": "Reflect on progress", "points": 15, "duration": 15, "description": "Acknowledge achievements and identify next steps"} ] } # Select routine type based on goal if "job" in goal.lower() or "company" in goal.lower(): routine_type = "job_search" elif "skill" in goal.lower() or "learn" in goal.lower(): routine_type = "skill_building" else: # Default to motivation if feeling negative emotions if emotion.lower() in ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged"]: routine_type = "motivation" else: routine_type = random.choice(list(routine_types.keys())) # Create daily plan daily_tasks = [] for day in range(1, days + 1): # Randomly select 1-3 tasks for the day that fit within available time available_tasks = routine_types[routine_type].copy() random.shuffle(available_tasks) day_tasks = [] remaining_time = available_time for task in available_tasks: if task["duration"] <= remaining_time and len(day_tasks) < 3: day_tasks.append(task) remaining_time -= task["duration"] if remaining_time < 10 or len(day_tasks) >= 3: break daily_tasks.append({ "day": day, "tasks": day_tasks }) routine = { "name": f"{days}-Day {routine_type.replace('_', ' ').title()} Plan", "description": f"A personalized routine to help you {goal} while managing feelings of {emotion}.", "days": days, "daily_tasks": daily_tasks } return routine def generate_document_template_with_ai(document_type, career_field="", experience_level=""): """Generate document templates using AI""" try: prompt = f""" Create a detailed template for a {document_type} for someone in the {career_field} field with {experience_level} experience level. The template should include all necessary sections and sample content that can be replaced. Format it in markdown. """ response = client.models.generate_content( model=MODEL_ID, contents=prompt ) return response.text except Exception as e: logger.error(f"Error in generate_document_template_with_ai: {str(e)}") return f"Error generating {document_type} template. Please try again later." def analyze_resume_with_ai(user_id, resume_text): """Analyze resume with AI and provide feedback""" try: user_profile = get_user_profile(user_id) prompt = f""" Analyze the following resume for a user who has the career goal of: {user_profile.get('career_goal', 'improving their career')} Resume Text: {resume_text} Provide detailed feedback on: 1. Overall strengths and weaknesses 2. Format and organization 3. Content effectiveness for their career goal 4. Specific improvement suggestions 5. Keywords and skills that should be highlighted Format your analysis with markdown headings and bullet points. """ response = client.models.generate_content( model=MODEL_ID, contents=prompt ) # Save resume save_user_resume(user_id, resume_text) return response.text except Exception as e: logger.error(f"Error in analyze_resume_with_ai: {str(e)}") return "I apologize, but I'm having trouble analyzing your resume right now. Please try again later." def analyze_portfolio_with_ai(user_id, portfolio_url, portfolio_description): """Analyze portfolio with AI and provide feedback""" try: user_profile = get_user_profile(user_id) prompt = f""" Analyze the following portfolio for a user who has the career goal of: {user_profile.get('career_goal', 'improving their career')} Portfolio URL: {portfolio_url} Portfolio Description: {portfolio_description} Based on the description provided, analyze: 1. How well the portfolio aligns with their career goal 2. Strengths of the portfolio 3. Areas for improvement 4. Specific suggestions to enhance the portfolio 5. How to better showcase skills relevant to their goal Format your analysis with markdown headings and bullet points. """ response = client.models.generate_content( model=MODEL_ID, contents=prompt ) # Save portfolio info portfolio_content = { "url": portfolio_url, "description": portfolio_description } save_user_portfolio(user_id, portfolio_content) return response.text except Exception as e: logger.error(f"Error in analyze_portfolio_with_ai: {str(e)}") return "I apologize, but I'm having trouble analyzing your portfolio right now. Please try again later." # Chart and visualization functions def create_emotion_chart(user_id): """Create a chart of user's emotions over time""" user_profile = get_user_profile(user_id) emotion_records = user_profile.get('daily_emotions', []) if not emotion_records: # Return empty chart if no data fig = px.line(title="Emotion Tracking: No data available yet") return fig # Prepare data emotion_values = { "Unmotivated": 1, "Anxious": 2, "Confused": 3, "Discouraged": 4, "Overwhelmed": 5, "Excited": 6 } dates = [] emotion_scores = [] emotion_names = [] for record in emotion_records: dates.append(datetime.strptime(record['date'], "%Y-%m-%d %H:%M:%S")) emotion = record['emotion'] emotion_names.append(emotion) emotion_scores.append(emotion_values.get(emotion, 3)) df = pd.DataFrame({ 'Date': dates, 'Emotion Score': emotion_scores, 'Emotion': emotion_names }) # Create chart fig = px.line(df, x='Date', y='Emotion Score', markers=True, labels={"Emotion Score": "Emotional State"}, title="Your Emotional Journey") # Add emotion names as hover text fig.update_traces(hovertemplate='%{x}
Feeling: %{text}', text=df['Emotion']) # Customize y-axis to show emotion names instead of numbers fig.update_yaxes( tickvals=list(emotion_values.values()), ticktext=list(emotion_values.keys()) ) return fig def create_progress_chart(user_id): """Create a chart showing user's progress over time""" user_profile = get_user_profile(user_id) tasks = user_profile.get('completed_tasks', []) if not tasks: # Return empty chart if no data fig = px.line(title="Progress Tracking: No data available yet") return fig # Prepare data dates = [] points = [] cumulative_points = 0 task_labels = [] for task in tasks: dates.append(datetime.strptime(task['date'], "%Y-%m-%d %H:%M:%S")) # Increment points (assuming each task has inherent points) cumulative_points += 20 points.append(cumulative_points) task_labels.append(task['task']) df = pd.DataFrame({ 'Date': dates, 'Points': points, 'Task': task_labels }) # Create chart fig = px.line(df, x='Date', y='Points', markers=True, title="Your Career Journey Progress") # Add task names as hover text fig.update_traces(hovertemplate='%{x}
Points: %{y}
Task: %{text}', text=df['Task']) return fig def create_routine_completion_gauge(user_id): """Create a gauge chart showing routine completion percentage""" user_profile = get_user_profile(user_id) routines = user_profile.get('routine_history', []) if not routines: # Return empty chart if no data fig = go.Figure() fig.add_annotation(text="No active routines yet", showarrow=False) return fig # Get the most recent routine latest_routine = routines[-1] completion = latest_routine.get('completion', 0) # Create gauge chart fig = go.Figure(go.Indicator( mode = "gauge+number", value = completion, domain = {'x': [0, 1], 'y': [0, 1]}, title = {'text': "Current Routine Completion"}, gauge = { 'axis': {'range': [None, 100]}, 'bar': {'color': "darkblue"}, 'steps': [ {'range': [0, 30], 'color': "lightgray"}, {'range': [30, 70], 'color': "gray"}, {'range': [70, 100], 'color': "darkgray"} ], 'threshold': { 'line': {'color': "red", 'width': 4}, 'thickness': 0.75, 'value': 90 } } )) return fig def create_skill_radar_chart(user_id): """Create a radar chart of user's skills based on resume analysis""" user_profile = get_user_profile(user_id) # If no resume, return empty chart if not user_profile.get('resume_path') or not os.path.exists(user_profile.get('resume_path')): fig = go.Figure() fig.add_annotation(text="No resume data available yet", showarrow=False) return fig # Read resume try: with open(user_profile.get('resume_path'), 'r') as file: resume_text = file.read() except Exception as e: logger.error(f"Error reading resume: {str(e)}") fig = go.Figure() fig.add_annotation(text="Error reading resume data", showarrow=False) return fig # Use AI to extract and score skills prompt = f""" Based on the following resume, identify 5-8 key skills and rate them on a scale of 1-10. Resume: {resume_text[:2000]}... Return the results as a JSON object with this structure: ```json {{ "skills": [ {{"name": "Skill Name", "score": 7}}, {{"name": "Another Skill", "score": 9}} ] }} ``` """ try: response = client.models.generate_content( model=MODEL_ID, contents=prompt ) skill_text = response.text # Extract JSON if "```json" in skill_text and "```" in skill_text.split("```json")[1]: json_str = skill_text.split("```json")[1].split("```")[0].strip() else: import re json_match = re.search(r'(\{.*\})', skill_text, re.DOTALL) if json_match: json_str = json_match.group(1) else: json_str = skill_text skill_data = json.loads(json_str) # Create radar chart if 'skills' in skill_data and skill_data['skills']: skills = skill_data['skills'] # Prepare data for radar chart categories = [skill['name'] for skill in skills] values = [skill['score'] for skill in skills] # Add the first point at the end to close the loop categories.append(categories[0]) values.append(values[0]) fig = go.Figure() fig.add_trace(go.Scatterpolar( r=values, theta=categories, fill='toself', name='Skills' )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 10] ) ), showlegend=False, title="Skill Assessment Based on Resume" ) return fig else: fig = go.Figure() fig.add_annotation(text="Could not extract skills from resume", showarrow=False) return fig except Exception as e: logger.error(f"Error creating skill radar chart: {str(e)}") fig = go.Figure() fig.add_annotation(text="Error analyzing skills", showarrow=False) return fig # Gradio interface components def create_interface(): """Create the Gradio interface for Aishura MVP""" # Generate a unique user ID for this session session_user_id = str(uuid.uuid4()) # Welcome page def welcome(name, location, emotion, goal): if not name or not location or not emotion or not goal: return ("Please fill out all fields to continue.", gr.update(visible=True), gr.update(visible=False)) # Update user profile update_user_profile(session_user_id, { "name": name, "location": location, "career_goal": goal }) # Record emotion add_emotion_record(session_user_id, emotion) # Generate initial AI response response = get_ai_response( session_user_id, f"I'm {name} from {location}. I'm feeling {emotion} and my career goal is to {goal}." ) return (response, gr.update(visible=False), gr.update(visible=True)) # Chat function def chat(message, history): # Get user profile user_profile = get_user_profile(session_user_id) # Convert history to the format expected by get_ai_response context = [] for h in history: context.append({"role": "user", "message": h[0]}) context.append({"role": "assistant", "message": h[1]}) # Get AI response response = get_ai_response(session_user_id, message, context) # Return updated history and empty message history.append((message, response)) return history, "" # Function to search for jobs def search_jobs_interface(query, location, max_results=5): jobs = search_jobs_with_serper(query, location, int(max_results)) if not jobs: return "No job opportunities found. Try adjusting your search terms." result = "## Job Opportunities Found\n\n" for i, job in enumerate(jobs, 1): result += f"### {i}. {job['title']}\n" result += f"**Company:** {job['company']}\n" result += f"**Location:** {job['location']}\n" result += f"**Description:** {job['description']}\n" result += f"**Link:** [Apply Here]({job['link']})\n\n" return result # Function to generate document templates def generate_template(document_type, career_field, experience_level): template = generate_document_template_with_ai(document_type, career_field, experience_level) return template # Function to create personal routine def create_personal_routine(emotion, goal, available_time, days): routine = create_personalized_routine_with_ai( session_user_id, emotion, goal, int(available_time), int(days) ) # Format routine for display result = f"# Your {routine['name']}\n\n" result += f"{routine['description']}\n\n" for day_plan in routine['daily_tasks']: result += f"## Day {day_plan['day']}\n\n" for task in day_plan['tasks']: result += f"- **{task['name']}** ({task['duration']} mins, {task['points']} points)\n" result += f" *{task['description']}*\n\n" return result # Function to analyze resume def analyze_resume_interface(resume_text): if not resume_text: return "Please enter your resume text." analysis = analyze_resume_with_ai(session_user_id, resume_text) # Update skill chart skill_fig = create_skill_radar_chart(session_user_id) return analysis, skill_fig # Function to analyze portfolio def analyze_portfolio_interface(portfolio_url, portfolio_description): if not portfolio_description: return "Please enter a description of your portfolio." analysis = analyze_portfolio_with_ai(session_user_id, portfolio_url, portfolio_description) return analysis # Function to mark a task as complete def complete_task(task_name): if not task_name: return "Please enter a task name." user_profile = add_task_to_user(session_user_id, task_name) # Update completion percentage of current routine if user_profile.get('routine_history'): latest_routine = user_profile['routine_history'][-1] # Simple approach: increase completion by random amount between 5-15% new_completion = min(100, latest_routine.get('completion', 0) + random.randint(5, 15)) latest_routine['completion'] = new_completion update_user_profile(session_user_id, {"routine_history": user_profile['routine_history']}) # Create updated charts emotion_fig = create_emotion_chart(session_user_id) progress_fig = create_progress_chart(session_user_id) gauge_fig = create_routine_completion_gauge(session_user_id) return ( f"Task '{task_name}' completed! You earned {random.randint(10, 25)} points.", "", emotion_fig, progress_fig, gauge_fig ) # Function to update emotion def update_emotion(emotion): add_emotion_record(session_user_id, emotion) # Create updated emotion chart emotion_fig = create_emotion_chart(session_user_id) return ( f"Your emotional state has been updated to: {emotion}", emotion_fig ) # Function to display recommendations def display_recommendations(): user_profile = get_user_profile(session_user_id) recommendations = user_profile.get('recommendations', []) if not recommendations: return "No recommendations available yet. Continue chatting with Aishura to receive personalized suggestions." # Show the most recent 5 recommendations recent_recs = recommendations[-5:] result = "# Your Personalized Recommendations\n\n" for i, rec in enumerate(recent_recs, 1): recommendation = rec['recommendation'] result += f"## {i}. {recommendation['title']}\n\n" result += f"{recommendation['description']}\n\n" result += f"**Priority:** {recommendation['priority'].title()}\n" result += f"**Type:** {recommendation['action_type'].replace('_', ' ').title()}\n\n" result += "---\n\n" return result # Create the interface with gr.Blocks(theme=gr.themes.Soft()) as app: gr.Markdown("# Aishura - Your AI Career Assistant") # Welcome page with gr.Group(visible=True) as welcome_group: gr.Markdown("## Welcome to Aishura") gr.Markdown("Let's start by getting to know you a little better.") name_input = gr.Textbox(label="Your Name") location_input = gr.Textbox(label="Your Location (City/Country)") emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling today?") goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your career goal?") welcome_button = gr.Button("Get Started") welcome_output = gr.Markdown() # Main interface with gr.Group(visible=False) as main_interface: with gr.Tabs() as tabs: # Chat tab with gr.TabItem("Chat with Aishura"): with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(height=500, avatar_images=["👤", "🤖"]) msg = gr.Textbox(show_label=False, placeholder="Type your message here...", container=False) with gr.Column(scale=1): gr.Markdown("## Your Recommendations") recommendation_output = gr.Markdown() refresh_recs_button = gr.Button("Refresh Recommendations") msg.submit(chat, [msg, chatbot], [chatbot, msg]) refresh_recs_button.click(display_recommendations, [], recommendation_output) # Profile and Career Analysis tab with gr.TabItem("Profile & Analysis"): with gr.Tabs() as analysis_tabs: # Resume Analysis with gr.TabItem("Resume Analysis"): gr.Markdown("## Resume Analysis") resume_text = gr.Textbox(label="Paste your resume here", lines=10, placeholder="Copy and paste your entire resume here for analysis...") analyze_resume_button = gr.Button("Analyze Resume") resume_output = gr.Markdown() skill_chart = gr.Plot(label="Skill Assessment") analyze_resume_button.click( analyze_resume_interface, [resume_text], [resume_output, skill_chart] ) # Portfolio Analysis with gr.TabItem("Portfolio Analysis"): gr.Markdown("## Portfolio Analysis") portfolio_url = gr.Textbox(label="Portfolio URL", placeholder="https://your-portfolio-website.com") portfolio_description = gr.Textbox(label="Describe your portfolio", lines=5, placeholder="Describe the content, structure, and purpose of your portfolio...") analyze_portfolio_button = gr.Button("Analyze Portfolio") portfolio_output = gr.Markdown() analyze_portfolio_button.click( analyze_portfolio_interface, [portfolio_url, portfolio_description], portfolio_output ) # Job Search tab with gr.TabItem("Find Opportunities"): gr.Markdown("## Search for Job Opportunities") job_query = gr.Textbox(label="What kind of job are you looking for?") job_location = gr.Textbox(label="Location") job_results = gr.Slider(minimum=5, maximum=20, value=10, step=5, label="Number of Results") search_button = gr.Button("Search") job_output = gr.Markdown() search_button.click(search_jobs_interface, [job_query, job_location, job_results], job_output) # Document Templates tab with gr.TabItem("Document Templates"): gr.Markdown("## Generate Document Templates") doc_type = gr.Dropdown( choices=["Resume", "Cover Letter", "Self-Introduction", "LinkedIn Profile", "Portfolio", "Interview Preparation"], label="Document Type" ) career_field = gr.Textbox(label="Career Field/Industry") experience = gr.Dropdown( choices=["Entry Level", "Mid-Career", "Senior"], label="Experience Level" ) template_button = gr.Button("Generate Template") template_output = gr.Markdown() template_button.click(generate_template, [doc_type, career_field, experience], template_output) # Personal Routine tab with gr.TabItem("Personal Routine"): gr.Markdown("## Create Your Personal Development Routine") routine_emotion = gr.Dropdown(choices=EMOTIONS, label="Current Emotional State") routine_goal = gr.Textbox(label="What specific goal are you working toward?") time_available = gr.Slider(minimum=15, maximum=120, value=60, step=15, label="Minutes Available Per Day") routine_days = gr.Slider(minimum=3, maximum=30, value=7, step=1, label="Length of Routine (Days)") routine_button = gr.Button("Create Routine") routine_output = gr.Markdown() routine_button.click(create_personal_routine, [routine_emotion, routine_goal, time_available, routine_days], routine_output) # Progress Tracking tab with gr.TabItem("Track Progress"): with gr.Row(): with gr.Column(): gr.Markdown("## Mark Tasks as Complete") task_input = gr.Textbox(label="Enter Task Name") complete_button = gr.Button("Mark as Complete") task_output = gr.Markdown() with gr.Column(): gr.Markdown("## Update Your Emotional State") new_emotion = gr.Dropdown(choices=EMOTIONS, label="How are you feeling now?") emotion_button = gr.Button("Update") emotion_output = gr.Markdown() with gr.Row(): with gr.Column(): emotion_chart = gr.Plot(label="Emotional Journey") with gr.Column(): progress_chart = gr.Plot(label="Progress Journey") with gr.Row(): gauge_chart = gr.Plot(label="Routine Completion") complete_button.click( complete_task, [task_input], [task_output, task_input, emotion_chart, progress_chart, gauge_chart] ) emotion_button.click( update_emotion, [new_emotion], [emotion_output, emotion_chart] ) # Welcome button action welcome_button.click( welcome, [name_input, location_input, emotion_dropdown, goal_dropdown], [welcome_output, welcome_group, main_interface] ) # Load initial recommendations app.load( display_recommendations, [], recommendation_output ) return app # Main function to launch the app def main(): app = create_interface() app.launch(share=True) if __name__ == "__main__": main()