Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import datetime
|
7 |
+
import uuid
|
8 |
+
import asyncio
|
9 |
+
import time
|
10 |
+
from typing import Dict, List, Optional, Tuple, Any
|
11 |
+
from urllib.parse import urlparse
|
12 |
+
from urllib.robotparser import RobotFileParser
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
import ollama
|
16 |
+
from duckduckgo_search import DDGS
|
17 |
+
import requests
|
18 |
+
|
19 |
+
# crawl4ai setup
|
20 |
+
try:
|
21 |
+
from crawl4ai import AsyncWebCrawler, BrowserConfig, CacheMode, CrawlerRunConfig
|
22 |
+
from crawl4ai.content_filter_strategy import BM25ContentFilter
|
23 |
+
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
|
24 |
+
CRAWL4AI_AVAILABLE = True
|
25 |
+
except ImportError:
|
26 |
+
print("WARNING: crawl4ai library not found or failed to import. Resource finding will be disabled.")
|
27 |
+
print("Install it: pip install 'crawl4ai[playwright]' and run 'playwright install --with-deps'")
|
28 |
+
CRAWL4AI_AVAILABLE = False
|
29 |
+
|
30 |
+
|
31 |
+
# --- Configuration ---
|
32 |
+
OLLAMA_MODEL = "llama3:8b" # Or your preferred model
|
33 |
+
FAISS_INDEX_FILE = "faiss_index.index"
|
34 |
+
FAISS_METADATA_FILE = "faiss_metadata.json"
|
35 |
+
USER_DATA_DIR = "user_data"
|
36 |
+
COMMUNITY_FILE = "community_posts.json"
|
37 |
+
os.makedirs(USER_DATA_DIR, exist_ok=True)
|
38 |
+
|
39 |
+
# FAISS Vector Dimension (Must match Ollama embedding model)
|
40 |
+
# nomic-embed-text: 768
|
41 |
+
VECTOR_DIMENSION = 768
|
42 |
+
|
43 |
+
|
44 |
+
# --- System Prompts (Same as before) ---
|
45 |
+
EMOTION_ANALYSIS_PROMPT = """...""" # Keep as is
|
46 |
+
GROWTH_PLAN_PROMPT = """...""" # Keep as is
|
47 |
+
RESOURCE_SYNTHESIS_PROMPT = """...""" # Keep as is (adjust if needed for FAISS context)
|
48 |
+
COMMUNITY_SUGGESTION_PROMPT = """...""" # Keep as is
|
49 |
+
|
50 |
+
# --- Data Persistence Functions ---
|
51 |
+
|
52 |
+
def load_user_data(username: str) -> Dict:
|
53 |
+
"""Loads data for a specific user from a JSON file."""
|
54 |
+
if not username: return {"entries": [], "plans": {}, "resources": {}, "profile": {}}
|
55 |
+
filepath = os.path.join(USER_DATA_DIR, f"{username}.json")
|
56 |
+
if os.path.exists(filepath):
|
57 |
+
try:
|
58 |
+
with open(filepath, 'r') as f:
|
59 |
+
return json.load(f)
|
60 |
+
except json.JSONDecodeError:
|
61 |
+
print(f"Warning: Corrupted data file for user {username}. Starting fresh.")
|
62 |
+
return {"entries": [], "plans": {}, "resources": {}, "profile": {}} # Return default on error
|
63 |
+
else:
|
64 |
+
# Create initial structure for new user
|
65 |
+
return {"entries": [], "plans": {}, "resources": {}, "profile": {"username": username, "joined": datetime.datetime.now().isoformat(), "points": 0, "goals":{}}}
|
66 |
+
|
67 |
+
def save_user_data(username: str, data: Dict):
|
68 |
+
"""Saves data for a specific user to a JSON file."""
|
69 |
+
if not username: return
|
70 |
+
filepath = os.path.join(USER_DATA_DIR, f"{username}.json")
|
71 |
+
with open(filepath, 'w') as f:
|
72 |
+
json.dump(data, f, indent=4)
|
73 |
+
|
74 |
+
def load_community_posts() -> List[Dict]:
|
75 |
+
"""Loads community posts from a JSON file."""
|
76 |
+
if os.path.exists(COMMUNITY_FILE):
|
77 |
+
try:
|
78 |
+
with open(COMMUNITY_FILE, 'r') as f:
|
79 |
+
return json.load(f)
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
print("Warning: Community posts file corrupted. Starting fresh.")
|
82 |
+
return []
|
83 |
+
else:
|
84 |
+
return []
|
85 |
+
|
86 |
+
def save_community_posts(posts: List[Dict]):
|
87 |
+
"""Saves community posts to a JSON file."""
|
88 |
+
with open(COMMUNITY_FILE, 'w') as f:
|
89 |
+
json.dump(posts, f, indent=4)
|
90 |
+
|
91 |
+
# --- FAISS and Embedding Functions ---
|
92 |
+
|
93 |
+
def get_ollama_embeddings(texts: List[str], model_name: str = "nomic-embed-text:latest") -> Tuple[List[List[float]], bool]:
|
94 |
+
"""Gets embeddings from Ollama. Returns embeddings and a success flag."""
|
95 |
+
ollama_api_url = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434") + "/api/embeddings"
|
96 |
+
embeddings = []
|
97 |
+
all_successful = True
|
98 |
+
max_retries = 2
|
99 |
+
retry_delay = 1
|
100 |
+
|
101 |
+
for text in texts:
|
102 |
+
if not text or not isinstance(text, str):
|
103 |
+
print(f"Warning: Skipping embedding for invalid input: {text}")
|
104 |
+
embeddings.append([])
|
105 |
+
all_successful = False
|
106 |
+
continue
|
107 |
+
|
108 |
+
current_embedding = []
|
109 |
+
for attempt in range(max_retries):
|
110 |
+
try:
|
111 |
+
response = requests.post(ollama_api_url, json={"model": model_name, "prompt": text}, headers={"Content-Type": "application/json"})
|
112 |
+
response.raise_for_status()
|
113 |
+
result = response.json()
|
114 |
+
if "embedding" in result and len(result["embedding"]) == VECTOR_DIMENSION:
|
115 |
+
current_embedding = result["embedding"]
|
116 |
+
break # Success for this text
|
117 |
+
else:
|
118 |
+
print(f"Warning: Ollama response issue (attempt {attempt+1}) for text: {text[:50]}... Response: {result}")
|
119 |
+
if attempt == max_retries - 1: all_successful = False
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Error getting Ollama embedding (Attempt {attempt+1}/{max_retries}): {e}")
|
122 |
+
if attempt < max_retries - 1: time.sleep(retry_delay)
|
123 |
+
else: all_successful = False
|
124 |
+
|
125 |
+
embeddings.append(current_embedding) # Append embedding or empty list if failed
|
126 |
+
|
127 |
+
# Replace empty lists with zero vectors
|
128 |
+
final_embeddings = []
|
129 |
+
for emb in embeddings:
|
130 |
+
if emb:
|
131 |
+
final_embeddings.append(emb)
|
132 |
+
else:
|
133 |
+
print("Warning: Replacing failed embedding with zero vector.")
|
134 |
+
final_embeddings.append([0.0] * VECTOR_DIMENSION)
|
135 |
+
all_successful = False # Mark overall success as False if any failed
|
136 |
+
|
137 |
+
return final_embeddings, all_successful
|
138 |
+
|
139 |
+
def create_or_load_faiss_index() -> Tuple[Optional[faiss.Index], Dict[int, Dict]]:
|
140 |
+
"""Loads FAISS index and metadata, or creates empty ones."""
|
141 |
+
index = None
|
142 |
+
metadata = {}
|
143 |
+
if os.path.exists(FAISS_INDEX_FILE) and os.path.exists(FAISS_METADATA_FILE):
|
144 |
+
try:
|
145 |
+
print(f"Loading FAISS index from {FAISS_INDEX_FILE}")
|
146 |
+
index = faiss.read_index(FAISS_INDEX_FILE)
|
147 |
+
print(f"Loading FAISS metadata from {FAISS_METADATA_FILE}")
|
148 |
+
with open(FAISS_METADATA_FILE, 'r') as f:
|
149 |
+
# Load metadata, converting string keys back to int
|
150 |
+
metadata_str_keys = json.load(f)
|
151 |
+
metadata = {int(k): v for k, v in metadata_str_keys.items()}
|
152 |
+
print(f"Loaded index with {index.ntotal} vectors and {len(metadata)} metadata entries.")
|
153 |
+
# Consistency check (optional but recommended)
|
154 |
+
if index.ntotal != len(metadata):
|
155 |
+
print(f"WARNING: FAISS index size ({index.ntotal}) != metadata size ({len(metadata)}). Rebuilding might be needed.")
|
156 |
+
# Decide recovery strategy: clear both, try to align, etc.
|
157 |
+
# Simplest: clear both and start over if inconsistent
|
158 |
+
# index = None
|
159 |
+
# metadata = {}
|
160 |
+
except Exception as e:
|
161 |
+
print(f"Error loading FAISS data: {e}. Starting fresh.")
|
162 |
+
index = None
|
163 |
+
metadata = {}
|
164 |
+
|
165 |
+
if index is None:
|
166 |
+
print("Creating new FAISS index.")
|
167 |
+
# Using IndexFlatL2, simple L2 distance. IndexIVFFlat is faster for large datasets but needs training.
|
168 |
+
index = faiss.IndexFlatL2(VECTOR_DIMENSION)
|
169 |
+
metadata = {}
|
170 |
+
|
171 |
+
return index, metadata
|
172 |
+
|
173 |
+
def save_faiss_index(index: faiss.Index, metadata: Dict[int, Dict]):
|
174 |
+
"""Saves FAISS index and metadata."""
|
175 |
+
try:
|
176 |
+
print(f"Saving FAISS index to {FAISS_INDEX_FILE} ({index.ntotal} vectors)")
|
177 |
+
faiss.write_index(index, FAISS_INDEX_FILE)
|
178 |
+
print(f"Saving FAISS metadata to {FAISS_METADATA_FILE} ({len(metadata)} entries)")
|
179 |
+
with open(FAISS_METADATA_FILE, 'w') as f:
|
180 |
+
# Store metadata with string keys for JSON compatibility
|
181 |
+
json.dump({str(k): v for k, v in metadata.items()}, f, indent=4)
|
182 |
+
print("FAISS data saved successfully.")
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Error saving FAISS data: {e}")
|
185 |
+
gr.Warning(f"Failed to save resource index: {e}")
|
186 |
+
|
187 |
+
|
188 |
+
def add_to_faiss(index: faiss.Index, metadata: Dict[int, Dict], content_list: List[Dict]) -> Tuple[faiss.Index, Dict[int, Dict], int]:
|
189 |
+
"""Adds crawled content to FAISS index and metadata."""
|
190 |
+
texts_to_embed = [item.get('markdown', '') for item in content_list if item.get('markdown')]
|
191 |
+
urls = [item.get('url', 'Unknown URL') for item in content_list] # Track URLs
|
192 |
+
|
193 |
+
if not texts_to_embed:
|
194 |
+
print("No text content provided to add_to_faiss.")
|
195 |
+
return index, metadata, 0
|
196 |
+
|
197 |
+
print(f"Generating embeddings for {len(texts_to_embed)} chunks...")
|
198 |
+
embeddings, success = get_ollama_embeddings(texts_to_embed)
|
199 |
+
if not success:
|
200 |
+
gr.Warning("Some embeddings failed to generate. Results might be incomplete.")
|
201 |
+
|
202 |
+
valid_embeddings = np.array([emb for emb in embeddings if emb], dtype='float32')
|
203 |
+
|
204 |
+
if valid_embeddings.shape[0] == 0:
|
205 |
+
print("No valid embeddings generated.")
|
206 |
+
return index, metadata, 0
|
207 |
+
|
208 |
+
# Add vectors to FAISS index
|
209 |
+
start_index = index.ntotal
|
210 |
+
index.add(valid_embeddings)
|
211 |
+
print(f"Added {valid_embeddings.shape[0]} vectors to FAISS index. New total: {index.ntotal}")
|
212 |
+
|
213 |
+
# Add corresponding metadata
|
214 |
+
added_count = 0
|
215 |
+
original_indices_added = [i for i, emb in enumerate(embeddings) if emb] # Indices from original list that had valid embeddings
|
216 |
+
|
217 |
+
for i, original_idx in enumerate(original_indices_added):
|
218 |
+
faiss_id = start_index + i
|
219 |
+
metadata[faiss_id] = {
|
220 |
+
"text": texts_to_embed[original_idx],
|
221 |
+
"url": urls[original_idx],
|
222 |
+
# Add other relevant info like title if available from crawler
|
223 |
+
}
|
224 |
+
added_count += 1
|
225 |
+
|
226 |
+
print(f"Added metadata for {added_count} entries.")
|
227 |
+
return index, metadata, added_count
|
228 |
+
|
229 |
+
def search_faiss(index: faiss.Index, metadata: Dict[int, Dict], query_text: str, k: int = 5) -> List[Dict]:
|
230 |
+
"""Searches FAISS index and returns relevant metadata entries."""
|
231 |
+
if not query_text or index.ntotal == 0:
|
232 |
+
return []
|
233 |
+
|
234 |
+
print(f"Generating embedding for query: {query_text[:50]}...")
|
235 |
+
query_embedding, success = get_ollama_embeddings([query_text])
|
236 |
+
|
237 |
+
if not success or not query_embedding[0]:
|
238 |
+
gr.Error("Failed to generate embedding for search query.")
|
239 |
+
return []
|
240 |
+
|
241 |
+
query_vector = np.array(query_embedding, dtype='float32')
|
242 |
+
|
243 |
+
print(f"Searching FAISS index (k={k})...")
|
244 |
+
try:
|
245 |
+
# D: distances, I: indices (IDs)
|
246 |
+
distances, indices = index.search(query_vector, k)
|
247 |
+
results = []
|
248 |
+
if indices.size > 0:
|
249 |
+
for i, faiss_id in enumerate(indices[0]): # indices is 2D array [[id1, id2, ...]]
|
250 |
+
if faiss_id != -1: # -1 indicates no neighbor found
|
251 |
+
entry = metadata.get(faiss_id)
|
252 |
+
if entry:
|
253 |
+
entry_with_score = entry.copy()
|
254 |
+
# L2 distance, lower is better. Can convert to similarity score if needed.
|
255 |
+
entry_with_score['score'] = float(distances[0][i])
|
256 |
+
results.append(entry_with_score)
|
257 |
+
else:
|
258 |
+
print(f"Warning: FAISS ID {faiss_id} not found in metadata.")
|
259 |
+
print(f"Found {len(results)} results from FAISS.")
|
260 |
+
return results
|
261 |
+
except Exception as e:
|
262 |
+
print(f"Error during FAISS search: {e}")
|
263 |
+
gr.Error(f"FAISS search failed: {e}")
|
264 |
+
return []
|
265 |
+
|
266 |
+
# --- LLM Interaction Functions ---
|
267 |
+
def call_ollama_chat(system_prompt: str, user_prompt: str) -> Dict:
|
268 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
269 |
+
try:
|
270 |
+
response = ollama.chat(model=OLLAMA_MODEL, messages=messages)
|
271 |
+
response_content = response['message']['content']
|
272 |
+
try:
|
273 |
+
# Clean potential markdown code block fences
|
274 |
+
if response_content.startswith("```json"): response_content = response_content[7:]
|
275 |
+
if response_content.endswith("```"): response_content = response_content[:-3]
|
276 |
+
parsed_json = json.loads(response_content.strip())
|
277 |
+
return parsed_json
|
278 |
+
except json.JSONDecodeError:
|
279 |
+
print(f"LLM response for '{system_prompt[:30]}...' was not valid JSON.")
|
280 |
+
return {"raw_response": response_content}
|
281 |
+
except Exception as e:
|
282 |
+
print(f"Error calling Ollama: {e}")
|
283 |
+
return {"error": str(e)}
|
284 |
+
|
285 |
+
# Specific LLM tasks
|
286 |
+
def analyze_emotion(journal_entry: str) -> Dict:
|
287 |
+
return call_ollama_chat(EMOTION_ANALYSIS_PROMPT, journal_entry)
|
288 |
+
|
289 |
+
def generate_growth_plan(emotion_analysis: Dict, user_goals: Dict) -> Dict:
|
290 |
+
input_data = {"emotion_analysis": emotion_analysis, "user_goals": user_goals}
|
291 |
+
return call_ollama_chat(GROWTH_PLAN_PROMPT, json.dumps(input_data, indent=2))
|
292 |
+
|
293 |
+
def synthesize_resources_llm(emotion_analysis: Dict, growth_plan: Optional[Dict], search_results: List[Dict]) -> Dict:
|
294 |
+
"""Synthesizes resources using LLM based on FAISS search results."""
|
295 |
+
if not search_results: return {"error": "No search results provided for synthesis."}
|
296 |
+
# Extract text and URLs from search results
|
297 |
+
snippets = [f"--- Content from {res.get('url', 'Unknown')} ---\n{res.get('text', '')}" for res in search_results]
|
298 |
+
source_urls = list(set([res.get('url', 'Unknown') for res in search_results]))
|
299 |
+
combined_content = "\n\n".join(snippets)
|
300 |
+
|
301 |
+
input_data = {
|
302 |
+
"emotion_analysis": emotion_analysis,
|
303 |
+
"growth_plan": growth_plan if growth_plan else "No specific growth plan available.",
|
304 |
+
"web_content_snippets": combined_content,
|
305 |
+
"source_urls_provided": source_urls
|
306 |
+
}
|
307 |
+
synthesis_result = call_ollama_chat(RESOURCE_SYNTHESIS_PROMPT, json.dumps(input_data, indent=2))
|
308 |
+
# Add source URLs if LLM didn't
|
309 |
+
if isinstance(synthesis_result, dict) and 'source_urls' not in synthesis_result:
|
310 |
+
synthesis_result['source_urls'] = source_urls
|
311 |
+
return synthesis_result
|
312 |
+
|
313 |
+
def get_community_suggestions(emotion_analysis: Dict, growth_plan: Optional[Dict]) -> Dict:
|
314 |
+
input_data = {"emotion_analysis": emotion_analysis, "growth_plan": growth_plan}
|
315 |
+
return call_ollama_chat(COMMUNITY_SUGGESTION_PROMPT, json.dumps(input_data, indent=2))
|
316 |
+
|
317 |
+
|
318 |
+
# --- Web Search and Crawl Functions ---
|
319 |
+
def get_web_urls(search_term: str, num_results: int = 3) -> List[str]:
|
320 |
+
# ... (Keep implementation from previous simplified version) ...
|
321 |
+
allowed_urls = []
|
322 |
+
try:
|
323 |
+
enhanced_search = f"{search_term} emotional regulation coping strategies therapy techniques"
|
324 |
+
print(f"Searching DDG for: {enhanced_search}")
|
325 |
+
results = DDGS().text(enhanced_search, max_results=num_results * 2) # Fetch slightly more
|
326 |
+
urls = [result["href"] for result in results if result.get("href")]
|
327 |
+
# Basic filtering
|
328 |
+
filtered_urls = []
|
329 |
+
seen_domains = set()
|
330 |
+
discard_domains = {"youtube.com", "amazon.com", "pinterest.com", "facebook.com", "instagram.com", "twitter.com", "tiktok.com"}
|
331 |
+
for url in urls:
|
332 |
+
if url.lower().endswith(".pdf"): continue
|
333 |
+
try:
|
334 |
+
domain = urlparse(url).netloc.replace("www.", "")
|
335 |
+
if domain and domain not in seen_domains and domain not in discard_domains:
|
336 |
+
filtered_urls.append(url)
|
337 |
+
seen_domains.add(domain)
|
338 |
+
except Exception: continue
|
339 |
+
allowed_urls = check_robots_txt(filtered_urls[:num_results]) # Limit to desired number
|
340 |
+
print(f"Allowed URLs: {allowed_urls}")
|
341 |
+
except Exception as e: print(f"❌ Failed search: {str(e)}")
|
342 |
+
return allowed_urls
|
343 |
+
|
344 |
+
def check_robots_txt(urls: List[str]) -> List[str]: # Simplified
|
345 |
+
return urls
|
346 |
+
|
347 |
+
async def crawl_webpages_simple(urls: List[str]) -> List[Dict]:
|
348 |
+
"""Crawls pages, returns [{'url': url, 'markdown': markdown}]."""
|
349 |
+
if not CRAWL4AI_AVAILABLE or not urls: return []
|
350 |
+
md_generator = DefaultMarkdownGenerator()
|
351 |
+
crawler_config = CrawlerRunConfig(markdown_generator=md_generator, excluded_tags=["script", "style", "nav", "footer", "aside"], only_text=False, cache_mode=CacheMode.NORMAL, user_agent="Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)", page_timeout=20000, wait_for_network_idle=True, network_idle_timeout=3000)
|
352 |
+
browser_config = BrowserConfig(headless=True, text_mode=False, light_mode=True)
|
353 |
+
results_list = []
|
354 |
+
print(f"Crawling {len(urls)} URLs...")
|
355 |
+
try:
|
356 |
+
async with AsyncWebCrawler(config=browser_config) as crawler:
|
357 |
+
crawl_results = await crawler.arun_many(urls, config=crawler_config)
|
358 |
+
for res in crawl_results:
|
359 |
+
markdown_content = res.markdown_v2.raw_markdown if (res and res.markdown_v2 and res.markdown_v2.raw_markdown) else ""
|
360 |
+
if markdown_content.strip(): results_list.append({'url': res.url, 'markdown': markdown_content.strip()})
|
361 |
+
except Exception as e: print(f"Crawling error: {e}")
|
362 |
+
print(f"Crawled {len(results_list)} pages successfully.")
|
363 |
+
return results_list
|
364 |
+
|
365 |
+
|
366 |
+
# --- Gradio App Logic ---
|
367 |
+
|
368 |
+
# Load initial FAISS data
|
369 |
+
faiss_index, faiss_metadata = create_or_load_faiss_index()
|
370 |
+
community_posts_global = load_community_posts() # Load community posts once
|
371 |
+
|
372 |
+
# Helper to format analysis for display
|
373 |
+
def format_analysis(analysis):
|
374 |
+
if not analysis or "error" in analysis or "raw_response" in analysis:
|
375 |
+
return f"Analysis Error or Incomplete:\n```json\n{json.dumps(analysis, indent=2)}\n```"
|
376 |
+
md = f"""
|
377 |
+
**Primary Emotion:** {analysis.get('primary_emotion', 'N/A')} (Intensity: {analysis.get('intensity', 'N/A')}/10)
|
378 |
+
**Triggers:** {', '.join(analysis.get('triggers', [])) or 'None'}
|
379 |
+
**Patterns:** {', '.join(analysis.get('patterns', [])) or 'None'}
|
380 |
+
|
381 |
+
**Growth Opportunities:**
|
382 |
+
"""
|
383 |
+
for opp in analysis.get('growth_opportunities', []): md += f"- {opp}\n"
|
384 |
+
md += "\n**Action Steps:**\n"
|
385 |
+
for step in analysis.get('action_steps', []): md += f"- {step}\n"
|
386 |
+
return md
|
387 |
+
|
388 |
+
# Helper to format plan for display
|
389 |
+
def format_plan(plan):
|
390 |
+
if not plan or "error" in plan or "raw_response" in plan:
|
391 |
+
return f"Plan Error or Incomplete:\n```json\n{json.dumps(plan, indent=2)}\n```"
|
392 |
+
md = "**Short-term Actions:**\n"
|
393 |
+
for item in plan.get('short_term_actions', []): md += f"- {item}\n"
|
394 |
+
md += "\n**Medium-term Practices:**\n"
|
395 |
+
for item in plan.get('medium_term_practices', []): md += f"- {item}\n"
|
396 |
+
md += "\n**Long-term Changes:**\n"
|
397 |
+
for item in plan.get('long_term_changes', []): md += f"- {item}\n"
|
398 |
+
md += "\n**Reflection Prompts:**\n"
|
399 |
+
for item in plan.get('reflection_prompts', []): md += f"- {item}\n"
|
400 |
+
md += "\n**Success Metrics:**\n"
|
401 |
+
for item in plan.get('success_metrics', []): md += f"- {item}\n"
|
402 |
+
return md
|
403 |
+
|
404 |
+
# Helper to format synthesis for display
|
405 |
+
def format_synthesis(synthesis):
|
406 |
+
if not synthesis or "error" in synthesis or "raw_response" in synthesis:
|
407 |
+
return f"Synthesis Error or Incomplete:\n```json\n{json.dumps(synthesis, indent=2)}\n```"
|
408 |
+
md = "**Key Insights:**\n"
|
409 |
+
for item in synthesis.get('key_insights', []): md += f"- {item}\n"
|
410 |
+
md += "\n**Practical Exercises:**\n"
|
411 |
+
for item in synthesis.get('practical_exercises', []): md += f"- {item}\n"
|
412 |
+
md += "\n**Recommended Readings:**\n"
|
413 |
+
for item in synthesis.get('recommended_readings', []): md += f"- {item}\n"
|
414 |
+
md += f"\n**Expert Advice Summary:**\n{synthesis.get('expert_advice', 'N/A')}\n"
|
415 |
+
md += "\n**Action Plan:**\n"
|
416 |
+
for item in synthesis.get('action_plan', []): md += f"- {item}\n"
|
417 |
+
md += "\n**Sources:**\n"
|
418 |
+
for item in synthesis.get('source_urls', []): md += f"- {item}\n"
|
419 |
+
return md
|
420 |
+
|
421 |
+
# Helper to format community posts
|
422 |
+
def format_community_posts(posts):
|
423 |
+
if not posts: return "No community posts yet."
|
424 |
+
md = ""
|
425 |
+
for post in sorted(posts, key=lambda x: x['timestamp'], reverse=True):
|
426 |
+
comments_md = ""
|
427 |
+
for c in sorted(post.get('comments', []), key=lambda x: x['timestamp']):
|
428 |
+
comments_md += f" - **{c['user_id']}** ({c['timestamp'][:16]}): {c['comment']}\n"
|
429 |
+
md += f"""
|
430 |
+
### {post['title']}
|
431 |
+
**By:** {post['user_id']} ({post['timestamp'][:16]}) | **Likes:** {post['likes']}
|
432 |
+
{post['content']}
|
433 |
+
**Comments ({len(post.get('comments',[]))}):**
|
434 |
+
{comments_md or ' (No comments)'}
|
435 |
+
---
|
436 |
+
"""
|
437 |
+
return md
|
438 |
+
|
439 |
+
|
440 |
+
# --- Gradio Interface ---
|
441 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="EmotionToAction") as demo:
|
442 |
+
# --- State Management ---
|
443 |
+
# User-specific data loaded from file
|
444 |
+
user_data_state = gr.State({})
|
445 |
+
# FAISS index and metadata loaded once
|
446 |
+
faiss_index_state = gr.State(faiss_index)
|
447 |
+
faiss_metadata_state = gr.State(faiss_metadata)
|
448 |
+
# Session state for current analysis/plan context
|
449 |
+
current_analysis_state = gr.State(None)
|
450 |
+
current_plan_state = gr.State(None)
|
451 |
+
current_emotion_id_state = gr.State(None) # ID of the entry being viewed/processed
|
452 |
+
community_posts_state = gr.State(community_posts_global) # Use global list loaded once
|
453 |
+
|
454 |
+
gr.Markdown("# 🌱 EmotionToAction (Gradio Version)")
|
455 |
+
|
456 |
+
with gr.Row():
|
457 |
+
username_input = gr.Textbox(label="Enter Username", placeholder="Type username and press Enter")
|
458 |
+
# Output for status messages
|
459 |
+
status_output = gr.Markdown("")
|
460 |
+
|
461 |
+
# --- Main Tabs ---
|
462 |
+
with gr.Tabs() as tabs:
|
463 |
+
# --- Journal Tab ---
|
464 |
+
with gr.TabItem("📝 Journal", id=0):
|
465 |
+
with gr.Row():
|
466 |
+
with gr.Column(scale=2):
|
467 |
+
journal_entry_input = gr.Textbox(label="What are you feeling right now?", lines=10, placeholder="Describe your emotional experience...")
|
468 |
+
analyze_button = gr.Button("Analyze Emotions", variant="primary")
|
469 |
+
with gr.Column(scale=1):
|
470 |
+
gr.Markdown("### Past Entries")
|
471 |
+
past_entries_display = gr.DataFrame(headers=["Date", "Emotion", "Entry Snippet", "Entry ID"], interactive=False, height=300)
|
472 |
+
# Load past entries when user changes or button clicked?
|
473 |
+
|
474 |
+
# --- Analysis Tab ---
|
475 |
+
with gr.TabItem("🧠 Analysis", id=1):
|
476 |
+
gr.Markdown("### AI Emotion Analysis")
|
477 |
+
analysis_display = gr.Markdown("Analysis will appear here after submitting a journal entry.")
|
478 |
+
with gr.Row():
|
479 |
+
plan_button = gr.Button("💡 Create Growth Plan")
|
480 |
+
find_resources_button = gr.Button("🔎 Find & Add Resources") # Changed label
|
481 |
+
|
482 |
+
# --- Plan Tab ---
|
483 |
+
with gr.TabItem("🚀 Growth Plan", id=2):
|
484 |
+
gr.Markdown("### Your Personalized Growth Plan")
|
485 |
+
plan_display = gr.Markdown("Plan will appear here after generation.")
|
486 |
+
|
487 |
+
# --- Resources Tab ---
|
488 |
+
with gr.TabItem("📚 Resources", id=3):
|
489 |
+
with gr.Accordion("Find New Resources (Adds to Index)", open=False):
|
490 |
+
find_resources_status = gr.Markdown("Trigger resource finding from the 'Analysis' tab.")
|
491 |
+
with gr.Accordion("Synthesize Found Resources", open=True):
|
492 |
+
synthesis_query_input = gr.Textbox(label="Describe the topic you want synthesized resources for (e.g., 'managing anxiety triggered by work')", placeholder="Uses info stored in resource index...")
|
493 |
+
synthesize_button = gr.Button("Synthesize Resources", variant="secondary")
|
494 |
+
synthesis_display = gr.Markdown("Synthesized insights will appear here.")
|
495 |
+
with gr.Accordion("Search Indexed Resources", open=True):
|
496 |
+
search_query_input = gr.Textbox(label="Search indexed content", placeholder="Enter keywords...")
|
497 |
+
search_button = gr.Button("Search Index", variant="secondary")
|
498 |
+
search_results_display = gr.DataFrame(headers=["Text Snippet", "Source URL", "Score"], interactive=False, height=300)
|
499 |
+
|
500 |
+
|
501 |
+
# --- Community Tab ---
|
502 |
+
with gr.TabItem("👥 Community", id=4):
|
503 |
+
gr.Markdown("### Community Hub")
|
504 |
+
with gr.Row():
|
505 |
+
with gr.Column(scale=2):
|
506 |
+
gr.Markdown("#### Recent Posts")
|
507 |
+
community_feed_display = gr.Markdown("Loading posts...") # Use Markdown for better formatting
|
508 |
+
with gr.Column(scale=1):
|
509 |
+
gr.Markdown("#### New Post")
|
510 |
+
post_title_input = gr.Textbox(label="Title")
|
511 |
+
post_content_input = gr.Textbox(label="Content", lines=5)
|
512 |
+
post_button = gr.Button("Submit Post", variant="primary")
|
513 |
+
# Add like/comment inputs here if desired (more complex)
|
514 |
+
|
515 |
+
# --- Profile Tab ---
|
516 |
+
with gr.TabItem("👤 Profile", id=5):
|
517 |
+
gr.Markdown("### Your Profile")
|
518 |
+
profile_points_display = gr.Number(label="Growth Points", interactive=False)
|
519 |
+
profile_joined_display = gr.Textbox(label="Member Since", interactive=False)
|
520 |
+
gr.Markdown("#### Growth Goals")
|
521 |
+
profile_goal1_input = gr.Textbox(label="Goal 1")
|
522 |
+
profile_goal2_input = gr.Textbox(label="Goal 2")
|
523 |
+
save_goals_button = gr.Button("Save Goals")
|
524 |
+
|
525 |
+
# --- Event Handlers ---
|
526 |
+
|
527 |
+
# Load user data when username is entered
|
528 |
+
def handle_username_change(username, user_data_s):
|
529 |
+
if not username:
|
530 |
+
return {"entries": [], "plans": {}, "resources": {}, "profile": {}}, "Please enter a username.", None, None, None, None, None, None, None
|
531 |
+
print(f"Loading data for user: {username}")
|
532 |
+
user_data = load_user_data(username)
|
533 |
+
# Ensure profile exists
|
534 |
+
if "profile" not in user_data:
|
535 |
+
user_data["profile"] = {"username": username, "joined": datetime.datetime.now().isoformat(), "points": 0, "goals":{}}
|
536 |
+
# Format past entries for DataFrame display
|
537 |
+
entry_list = user_data.get("entries", [])
|
538 |
+
df_data = [
|
539 |
+
[e['timestamp'][:10], e['analysis'].get('primary_emotion', 'N/A'), e['journal_entry'][:50]+'...', e['id']]
|
540 |
+
for e in sorted(entry_list, key=lambda x:x['timestamp'], reverse=True)
|
541 |
+
]
|
542 |
+
past_entries_df = pd.DataFrame(df_data, columns=["Date", "Emotion", "Entry Snippet", "Entry ID"])
|
543 |
+
|
544 |
+
return user_data, f"Loaded data for {username}.", past_entries_df, \
|
545 |
+
user_data.get("profile", {}).get("points", 0), \
|
546 |
+
user_data.get("profile", {}).get("joined", ""), \
|
547 |
+
user_data.get("profile", {}).get("goals", {}).get("goal1", ""), \
|
548 |
+
user_data.get("profile", {}).get("goals", {}).get("goal2", "")
|
549 |
+
|
550 |
+
username_input.submit(
|
551 |
+
handle_username_change,
|
552 |
+
inputs=[username_input, user_data_state],
|
553 |
+
outputs=[user_data_state, status_output, past_entries_display,
|
554 |
+
profile_points_display, profile_joined_display,
|
555 |
+
profile_goal1_input, profile_goal2_input]
|
556 |
+
)
|
557 |
+
|
558 |
+
# Analyze Button Click
|
559 |
+
def handle_analyze(username, user_data_s, journal_entry):
|
560 |
+
if not username: return "Please enter username first.", None, None, None, None, None
|
561 |
+
if not journal_entry: return "Journal entry cannot be empty.", None, None, None, None, None
|
562 |
+
|
563 |
+
status = "Analyzing emotions..."
|
564 |
+
yield status, None, None, None, None, None # Update status immediately
|
565 |
+
|
566 |
+
analysis = analyze_emotion(journal_entry)
|
567 |
+
|
568 |
+
if "error" in analysis:
|
569 |
+
status = f"Analysis failed: {analysis['error']}"
|
570 |
+
formatted_analysis = f"Error:\n```json\n{json.dumps(analysis, indent=2)}\n```"
|
571 |
+
yield status, formatted_analysis, None, None, None, None
|
572 |
+
elif "raw_response" in analysis:
|
573 |
+
status = "Analysis complete (raw response)."
|
574 |
+
formatted_analysis = f"Raw Response:\n```\n{analysis['raw_response']}\n```"
|
575 |
+
# Cannot proceed with raw response usually
|
576 |
+
yield status, formatted_analysis, None, None, None, None
|
577 |
+
else:
|
578 |
+
# Save entry and update user data
|
579 |
+
entry_id = str(uuid.uuid4())
|
580 |
+
new_entry = {
|
581 |
+
'id': entry_id,
|
582 |
+
'timestamp': datetime.datetime.now().isoformat(),
|
583 |
+
'journal_entry': journal_entry,
|
584 |
+
'analysis': analysis
|
585 |
+
}
|
586 |
+
user_data_s["entries"] = user_data_s.get("entries", []) + [new_entry]
|
587 |
+
user_data_s["profile"]["points"] = user_data_s.get("profile", {}).get("points", 0) + 10
|
588 |
+
save_user_data(username, user_data_s)
|
589 |
+
|
590 |
+
# Update UI
|
591 |
+
status = "Analysis complete!"
|
592 |
+
formatted_analysis = format_analysis(analysis)
|
593 |
+
# Update past entries display immediately
|
594 |
+
entry_list = user_data_s.get("entries", [])
|
595 |
+
df_data = [[e['timestamp'][:10], e['analysis'].get('primary_emotion', 'N/A'), e['journal_entry'][:50]+'...', e['id']] for e in sorted(entry_list, key=lambda x:x['timestamp'], reverse=True)]
|
596 |
+
past_entries_df = pd.DataFrame(df_data, columns=["Date", "Emotion", "Entry Snippet", "Entry ID"])
|
597 |
+
|
598 |
+
# Return updates for status, analysis display, current analysis state, current emotion ID, user data state, and past entries df
|
599 |
+
yield status, formatted_analysis, analysis, entry_id, user_data_s, past_entries_df
|
600 |
+
|
601 |
+
analyze_button.click(
|
602 |
+
handle_analyze,
|
603 |
+
inputs=[username_input, user_data_state, journal_entry_input],
|
604 |
+
outputs=[status_output, analysis_display, current_analysis_state, current_emotion_id_state, user_data_state, past_entries_display]
|
605 |
+
)
|
606 |
+
|
607 |
+
# Create Plan Button Click
|
608 |
+
def handle_create_plan(username, user_data_s, current_analysis, current_emotion_id):
|
609 |
+
if not username: return "Please enter username.", None, None
|
610 |
+
if not current_analysis: return "Please analyze an entry first.", None, None
|
611 |
+
if not current_emotion_id: return "Internal error: Missing emotion ID.", None, None
|
612 |
+
|
613 |
+
status = "Generating growth plan..."
|
614 |
+
yield status, None, None # Update status immediately
|
615 |
+
|
616 |
+
user_goals = user_data_s.get("profile", {}).get("goals", {})
|
617 |
+
plan = generate_growth_plan(current_analysis, user_goals)
|
618 |
+
|
619 |
+
if "error" in plan or "raw_response" in plan:
|
620 |
+
status = "Failed to generate plan."
|
621 |
+
formatted_plan = f"Error/Raw:\n```json\n{json.dumps(plan, indent=2)}\n```"
|
622 |
+
yield status, formatted_plan, None
|
623 |
+
else:
|
624 |
+
# Save plan and update points
|
625 |
+
user_data_s["plans"] = user_data_s.get("plans", {})
|
626 |
+
user_data_s["plans"][current_emotion_id] = plan
|
627 |
+
user_data_s["profile"]["points"] = user_data_s.get("profile", {}).get("points", 0) + 20
|
628 |
+
save_user_data(username, user_data_s)
|
629 |
+
status = "Growth plan generated!"
|
630 |
+
formatted_plan = format_plan(plan)
|
631 |
+
yield status, formatted_plan, plan # Update status, display, and plan state
|
632 |
+
|
633 |
+
plan_button.click(
|
634 |
+
handle_create_plan,
|
635 |
+
inputs=[username_input, user_data_state, current_analysis_state, current_emotion_id_state],
|
636 |
+
outputs=[status_output, plan_display, current_plan_state]
|
637 |
+
)
|
638 |
+
|
639 |
+
# Find & Add Resources Button Click (Async)
|
640 |
+
async def handle_find_resources(username, current_analysis, faiss_index_s, faiss_metadata_s, progress=gr.Progress(track_tqdm=True)):
|
641 |
+
if not username: return "Please enter username.", faiss_index_s, faiss_metadata_s, "Idle"
|
642 |
+
if not current_analysis: return "Please analyze an entry first.", faiss_index_s, faiss_metadata_s, "Idle"
|
643 |
+
if not CRAWL4AI_AVAILABLE: return "crawl4ai library not installed.", faiss_index_s, faiss_metadata_s, "Error"
|
644 |
+
|
645 |
+
status_msg = "Starting resource finding..."
|
646 |
+
yield status_msg, faiss_index_s, faiss_metadata_s, status_msg # Initial update
|
647 |
+
|
648 |
+
emotion = current_analysis.get('primary_emotion', 'challenge')
|
649 |
+
triggers = current_analysis.get('triggers', [])
|
650 |
+
search_term = f"{emotion} coping strategies {' '.join(triggers)}"
|
651 |
+
|
652 |
+
progress(0.1, desc="Searching web...")
|
653 |
+
status_msg = "Searching web..."
|
654 |
+
yield status_msg, faiss_index_s, faiss_metadata_s, status_msg
|
655 |
+
urls = get_web_urls(search_term, num_results=3) # Limit URLs
|
656 |
+
if not urls: yield "No relevant URLs found.", faiss_index_s, faiss_metadata_s, "No URLs found."; return
|
657 |
+
|
658 |
+
progress(0.3, desc=f"Crawling {len(urls)} pages...")
|
659 |
+
status_msg = f"Crawling {len(urls)} pages..."
|
660 |
+
yield status_msg, faiss_index_s, faiss_metadata_s, status_msg
|
661 |
+
crawled_content = await crawl_webpages_simple(urls) # Async call
|
662 |
+
if not crawled_content: yield "Crawling failed or yielded no content.", faiss_index_s, faiss_metadata_s, "Crawling failed."; return
|
663 |
+
|
664 |
+
progress(0.7, desc="Adding content to FAISS index...")
|
665 |
+
status_msg = "Adding content to index..."
|
666 |
+
yield status_msg, faiss_index_s, faiss_metadata_s, status_msg
|
667 |
+
# Note: add_to_faiss modifies the index/metadata objects in place
|
668 |
+
index_obj = faiss_index_s # Get current index from state
|
669 |
+
meta_obj = faiss_metadata_s # Get current metadata from state
|
670 |
+
_, _, added_count = add_to_faiss(index_obj, meta_obj, crawled_content)
|
671 |
+
|
672 |
+
if added_count > 0:
|
673 |
+
# IMPORTANT: Save the modified index and metadata back to disk
|
674 |
+
save_faiss_index(index_obj, meta_obj)
|
675 |
+
status_msg = f"Successfully added {added_count} content chunks to the index."
|
676 |
+
yield status_msg, index_obj, meta_obj, status_msg # Return updated state objects
|
677 |
+
else:
|
678 |
+
status_msg = "Crawled content, but failed to add anything to the index."
|
679 |
+
yield status_msg, index_obj, meta_obj, status_msg
|
680 |
+
|
681 |
+
# Use the wrapper for async function
|
682 |
+
find_resources_button.click(
|
683 |
+
handle_find_resources,
|
684 |
+
inputs=[username_input, current_analysis_state, faiss_index_state, faiss_metadata_state],
|
685 |
+
outputs=[status_output, faiss_index_state, faiss_metadata_state, find_resources_status] # Update index/meta state
|
686 |
+
)
|
687 |
+
|
688 |
+
# Synthesize Button Click
|
689 |
+
def handle_synthesize(username, user_data_s, current_emotion_id, faiss_index_s, faiss_metadata_s, query_override=""):
|
690 |
+
if not username: return "Please enter username.", None
|
691 |
+
# Prioritize using an emotion context if available, else use the override query
|
692 |
+
search_text = ""
|
693 |
+
context_analysis = None
|
694 |
+
context_plan = None
|
695 |
+
if not query_override and current_emotion_id:
|
696 |
+
entry = next((e for e in user_data_s.get("entries", []) if e['id'] == current_emotion_id), None)
|
697 |
+
if entry and 'analysis' in entry:
|
698 |
+
context_analysis = entry['analysis']
|
699 |
+
context_plan = user_data_s.get("plans", {}).get(current_emotion_id)
|
700 |
+
emotion = context_analysis.get('primary_emotion', 'issue')
|
701 |
+
triggers = context_analysis.get('triggers', [])
|
702 |
+
search_text = f"{emotion} coping techniques {' '.join(triggers)}"
|
703 |
+
else: query_override = "general emotional coping strategies" # Fallback if context missing
|
704 |
+
elif not query_override:
|
705 |
+
query_override = "general emotional coping strategies" # Default if no context
|
706 |
+
|
707 |
+
if query_override: search_text = query_override
|
708 |
+
if not search_text: return "Cannot determine search topic.", None
|
709 |
+
|
710 |
+
status = f"Searching index for '{search_text[:30]}...' and synthesizing..."
|
711 |
+
yield status, "Synthesizing..." # Update status
|
712 |
+
|
713 |
+
search_results = search_faiss(faiss_index_s, faiss_metadata_s, search_text, k=5)
|
714 |
+
if not search_results:
|
715 |
+
yield f"No relevant info found in index for '{search_text[:30]}...'", "No results found."
|
716 |
+
return
|
717 |
+
|
718 |
+
synthesis = synthesize_resources_llm(context_analysis or {}, context_plan, search_results)
|
719 |
+
|
720 |
+
if "error" in synthesis or "raw_response" in synthesis:
|
721 |
+
formatted_synthesis = f"Synthesis Error/Raw:\n```json\n{json.dumps(synthesis, indent=2)}\n```"
|
722 |
+
yield "Synthesis failed.", formatted_synthesis
|
723 |
+
else:
|
724 |
+
# Save synthesis result associated with the emotion ID if context was used
|
725 |
+
if context_analysis and current_emotion_id:
|
726 |
+
user_data_s["resources"] = user_data_s.get("resources", {})
|
727 |
+
user_data_s["resources"][current_emotion_id] = synthesis
|
728 |
+
save_user_data(username, user_data_s)
|
729 |
+
status = "Synthesis complete and saved!"
|
730 |
+
else:
|
731 |
+
status = "Synthesis complete (not saved to specific entry)."
|
732 |
+
formatted_synthesis = format_synthesis(synthesis)
|
733 |
+
yield status, formatted_synthesis
|
734 |
+
|
735 |
+
synthesize_button.click(
|
736 |
+
handle_synthesize,
|
737 |
+
inputs=[username_input, user_data_state, current_emotion_id_state, faiss_index_state, faiss_metadata_state, synthesis_query_input],
|
738 |
+
outputs=[status_output, synthesis_display]
|
739 |
+
)
|
740 |
+
|
741 |
+
|
742 |
+
# Search Index Button Click
|
743 |
+
def handle_search_index(faiss_index_s, faiss_metadata_s, query):
|
744 |
+
if not query: return "Please enter search query.", None
|
745 |
+
results = search_faiss(faiss_index_s, faiss_metadata_s, query, k=10)
|
746 |
+
if not results: return "No results found.", None
|
747 |
+
# Format for DataFrame
|
748 |
+
df_data = [[res.get('text', '')[:150]+'...', res.get('url', 'N/A'), f"{res.get('score', 0):.2f}"] for res in results]
|
749 |
+
results_df = pd.DataFrame(df_data, columns=["Text Snippet", "Source URL", "Score"])
|
750 |
+
return f"Found {len(results)} results.", results_df
|
751 |
+
|
752 |
+
search_button.click(
|
753 |
+
handle_search_index,
|
754 |
+
inputs=[faiss_index_state, faiss_metadata_state, search_query_input],
|
755 |
+
outputs=[status_output, search_results_display]
|
756 |
+
)
|
757 |
+
|
758 |
+
# --- Community Handlers ---
|
759 |
+
def handle_new_post(username, title, content, community_posts_s):
|
760 |
+
if not username: return "Enter username first.", community_posts_s, format_community_posts(community_posts_s)
|
761 |
+
if not title or not content: return "Title and content required.", community_posts_s, format_community_posts(community_posts_s)
|
762 |
+
|
763 |
+
new_post = {'id': str(uuid.uuid4()), 'user_id': username, 'timestamp': datetime.datetime.now().isoformat(), 'title': title, 'content': content, 'likes': 0, 'comments': []}
|
764 |
+
community_posts_s.append(new_post)
|
765 |
+
save_community_posts(community_posts_s) # Save updated list
|
766 |
+
return "Post submitted.", community_posts_s, format_community_posts(community_posts_s)
|
767 |
+
|
768 |
+
post_button.click(
|
769 |
+
handle_new_post,
|
770 |
+
inputs=[username_input, post_title_input, post_content_input, community_posts_state],
|
771 |
+
outputs=[status_output, community_posts_state, community_feed_display] # Update state and display
|
772 |
+
)
|
773 |
+
|
774 |
+
# Initial load of community posts display
|
775 |
+
demo.load(lambda posts: format_community_posts(posts), inputs=community_posts_state, outputs=community_feed_display)
|
776 |
+
|
777 |
+
|
778 |
+
# --- Profile Handlers ---
|
779 |
+
def handle_save_goals(username, user_data_s, goal1, goal2):
|
780 |
+
if not username: return "Enter username first.", user_data_s
|
781 |
+
user_data_s["profile"] = user_data_s.get("profile", {})
|
782 |
+
user_data_s["profile"]["goals"] = {"goal1": goal1, "goal2": goal2}
|
783 |
+
save_user_data(username, user_data_s)
|
784 |
+
return "Goals saved!", user_data_s
|
785 |
+
|
786 |
+
save_goals_button.click(
|
787 |
+
handle_save_goals,
|
788 |
+
inputs=[username_input, user_data_state, profile_goal1_input, profile_goal2_input],
|
789 |
+
outputs=[status_output, user_data_state] # Update user data state
|
790 |
+
)
|
791 |
+
|
792 |
+
|
793 |
+
# Launch the Gradio app
|
794 |
+
if __name__ == "__main__":
|
795 |
+
demo.launch(debug=True) # Share=True to create public link if needed
|