import gradio as gr from transformers import pipeline # Initialize the text-generation pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype="auto", device_map="auto") # Define agent roles agents = { "Pirate": "You are a friendly chatbot who always responds in the style of a pirate.", "Professor": "You are a knowledgeable professor who explains concepts in detail.", "Comedian": "You are a witty comedian who answers with humor and jokes.", "Motivator": "You are a motivational speaker who provides inspiring and uplifting responses.", } def multi_agent_system(agent, user_input): # Set the role of the selected agent messages = [ {"role": "system", "content": agents[agent]}, {"role": "user", "content": user_input}, ] # Format the chat template prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate the response outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) return outputs[0]["generated_text"] # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Multi-Agent Chat System") with gr.Row(): agent_dropdown = gr.Dropdown( choices=list(agents.keys()), label="Select an Agent", value="Pirate" ) user_input = gr.Textbox(label="Enter your message:", placeholder="Type your query here...") submit_button = gr.Button("Submit") chat_output = gr.Textbox(label="Agent's Response:", interactive=False) submit_button.click( fn=multi_agent_system, inputs=[agent_dropdown, user_input], outputs=chat_output ) # Launch the app demo.launch()