Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,346 @@
|
|
|
|
1 |
import cv2
|
2 |
-
import sounddevice as sd
|
3 |
-
import mediapipe as mp
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
-
import librosa
|
7 |
-
import threading
|
8 |
import time
|
9 |
-
import
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
PROCESSING_INTERVAL_SECONDS = 4.0
|
17 |
-
CSV_FILENAME = "metrics_log.csv"
|
18 |
-
|
19 |
-
# --- Buffers (use thread-safe versions if needed) ---
|
20 |
-
frame_buffer = deque(maxlen=int(BUFFER_DURATION_SECONDS * 30)) # Assuming ~30fps
|
21 |
-
audio_buffer = deque(maxlen=int(BUFFER_DURATION_SECONDS * SAMPLE_RATE))
|
22 |
-
frame_timestamps = deque(maxlen=int(BUFFER_DURATION_SECONDS * 30))
|
23 |
-
audio_timestamps = deque(maxlen=int(BUFFER_DURATION_SECONDS * SAMPLE_RATE)) # Timestamps per chunk
|
24 |
-
|
25 |
-
# --- MediaPipe Setup ---
|
26 |
mp_face_mesh = mp.solutions.face_mesh
|
27 |
mp_drawing = mp.solutions.drawing_utils
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
def
|
57 |
-
if not
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
avg_pitch = np.random.randint(80, 300) # Placeholder
|
70 |
-
return {"avg_rms": avg_rms, "avg_pitch": avg_pitch}
|
71 |
-
|
72 |
-
|
73 |
-
def calculate_final_metrics(video_features, audio_features):
|
74 |
-
# TODO: Combine features into the final 0-1 metrics
|
75 |
-
# This requires defining heuristics or a simple model based on the features
|
76 |
-
valence = (video_features.get("avg_valence_proxy", 0) + 1) / 2 # Normalize [-1,1] to [0,1]
|
77 |
-
|
78 |
-
# Combine multiple arousal indicators (weights are examples)
|
79 |
-
arousal_face = video_features.get("avg_arousal_proxy_face", 0)
|
80 |
-
arousal_voice_rms = min(audio_features.get("avg_rms", 0) * 10, 1.0) # Scale RMS
|
81 |
-
arousal_pupil = video_features.get("avg_pupil_proxy", 0.5) # Assuming pupil proxy is 0-1
|
82 |
-
arousal = (0.4 * arousal_face + 0.3 * arousal_voice_rms + 0.3 * arousal_pupil)
|
83 |
-
|
84 |
-
engagement = video_features.get("face_detected_ratio", 0) # Simple proxy
|
85 |
-
# Could add logic based on blink rate deviations, gaze stability etc.
|
86 |
-
|
87 |
-
# Stress based on neg valence, high arousal
|
88 |
-
stress = max(0, (1.0 - valence) * arousal) # Example heuristic
|
89 |
-
|
90 |
-
# Cog load based on blink rate, pupil dilation
|
91 |
-
blink_rate = video_features.get("blink_count", 0) / PROCESSING_INTERVAL_SECONDS
|
92 |
-
# Normalize blink rate based on expected range (e.g. 0-1 Hz)
|
93 |
-
norm_blink_rate = min(blink_rate, 1.0)
|
94 |
-
cog_load = (0.5 * arousal_pupil + 0.5 * norm_blink_rate) # Example heuristic
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
return {
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
"Cognitive_Load_Proxy": round(cog_load, 3),
|
103 |
-
"Blink_Rate_Hz": round(blink_rate, 3),
|
104 |
-
"Pupil_Size_Proxy": round(video_features.get("avg_pupil_proxy", 0), 3)
|
105 |
-
# --- Exclude Traits ---
|
106 |
}
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
#
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
if __name__ == "__main__":
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
if current_time - last_process_time >= PROCESSING_INTERVAL_SECONDS:
|
164 |
-
print(f"\n--- Processing window ending {time.strftime('%H:%M:%S')} ---")
|
165 |
-
window_end_time = current_time
|
166 |
-
window_start_time = window_end_time - PROCESSING_INTERVAL_SECONDS
|
167 |
-
|
168 |
-
# --- Get data for the window (Needs thread safety - locks!) ---
|
169 |
-
# This part is tricky: efficiently select items in the timestamp range
|
170 |
-
# Simple non-thread-safe example:
|
171 |
-
frames_in_window = [f for f, ts in zip(list(frame_buffer), list(frame_timestamps)) if window_start_time <= ts < window_end_time]
|
172 |
-
audio_in_window = [a for a, ts in zip(list(audio_buffer), list(audio_timestamps)) if window_start_time <= ts < window_end_time]
|
173 |
-
# In practice, you'd remove processed items from the buffer
|
174 |
-
|
175 |
-
if not frames_in_window:
|
176 |
-
print("No frames in window, skipping.")
|
177 |
-
last_process_time = current_time # Or += PROCESSING_INTERVAL_SECONDS
|
178 |
-
continue
|
179 |
-
|
180 |
-
# --- Analyze ---
|
181 |
-
video_features = analyze_video_window(frames_in_window, []) # Pass timestamps if needed
|
182 |
-
audio_features = analyze_audio_window(audio_in_window, []) # Pass timestamps if needed
|
183 |
-
|
184 |
-
# --- Calculate & Log ---
|
185 |
-
final_metrics = calculate_final_metrics(video_features, audio_features)
|
186 |
-
print("Calculated Metrics:", final_metrics)
|
187 |
-
log_to_csv(CSV_FILENAME, final_metrics)
|
188 |
-
|
189 |
-
last_process_time = current_time # Reset timer accurately
|
190 |
-
|
191 |
-
|
192 |
-
time.sleep(0.1) # Prevent busy-waiting
|
193 |
-
|
194 |
-
except KeyboardInterrupt:
|
195 |
-
print("Stopping...")
|
196 |
-
video_active = False
|
197 |
-
audio_active = False
|
198 |
-
# Wait for threads to finish
|
199 |
-
vid_thread.join(timeout=2.0)
|
200 |
-
# Audio thread stops when sd.sleep ends or stream closes
|
201 |
-
print("Done.")
|
|
|
1 |
+
import gradio as gr
|
2 |
import cv2
|
|
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
|
|
5 |
import time
|
6 |
+
import mediapipe as mp
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from matplotlib.colors import LinearSegmentedColormap
|
9 |
+
from matplotlib.collections import LineCollection
|
10 |
+
import os # Potentially needed if saving plots temporarily
|
11 |
+
|
12 |
+
# --- MediaPipe Initialization (Keep as is) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
mp_face_mesh = mp.solutions.face_mesh
|
14 |
mp_drawing = mp.solutions.drawing_utils
|
15 |
+
mp_drawing_styles = mp.solutions.drawing_styles
|
16 |
+
|
17 |
+
# Create Face Mesh instance globally (or manage creation/closing if resource intensive)
|
18 |
+
# Using try-except block for safer initialization if needed in complex setups
|
19 |
+
try:
|
20 |
+
face_mesh = mp_face_mesh.FaceMesh(
|
21 |
+
max_num_faces=1,
|
22 |
+
refine_landmarks=True,
|
23 |
+
min_detection_confidence=0.5,
|
24 |
+
min_tracking_confidence=0.5)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error initializing MediaPipe Face Mesh: {e}")
|
27 |
+
face_mesh = None # Handle potential initialization errors
|
28 |
+
|
29 |
+
# --- Metrics Definition (Keep as is) ---
|
30 |
+
metrics = [
|
31 |
+
"valence", "arousal", "dominance", "cognitive_load",
|
32 |
+
"emotional_stability", "openness", "agreeableness",
|
33 |
+
"neuroticism", "conscientiousness", "extraversion",
|
34 |
+
"stress_index", "engagement_level"
|
35 |
+
]
|
36 |
+
# Initial DataFrame structure for the state
|
37 |
+
initial_metrics_df = pd.DataFrame(columns=['timestamp'] + metrics)
|
38 |
+
|
39 |
+
|
40 |
+
# --- Analysis Functions (Keep exactly as you provided) ---
|
41 |
+
# Ensure these functions handle None input for landmarks gracefully
|
42 |
+
def extract_face_landmarks(image, face_mesh_instance):
|
43 |
+
if image is None or face_mesh_instance is None:
|
44 |
+
return None
|
45 |
+
# Process the image
|
46 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
47 |
+
image_rgb.flags.writeable = False # Optimize
|
48 |
+
results = face_mesh_instance.process(image_rgb)
|
49 |
+
image_rgb.flags.writeable = True
|
50 |
+
|
51 |
+
if results.multi_face_landmarks:
|
52 |
+
return results.multi_face_landmarks[0]
|
53 |
+
return None
|
54 |
+
|
55 |
+
def calculate_ear(landmarks): # Keep as is
|
56 |
+
if not landmarks: return 0.0
|
57 |
+
LEFT_EYE = [33, 160, 158, 133, 153, 144]
|
58 |
+
RIGHT_EYE = [362, 385, 387, 263, 373, 380]
|
59 |
+
def get_landmark_coords(landmark_indices):
|
60 |
+
return np.array([(landmarks.landmark[idx].x, landmarks.landmark[idx].y) for idx in landmark_indices])
|
61 |
+
left_eye_points = get_landmark_coords(LEFT_EYE)
|
62 |
+
right_eye_points = get_landmark_coords(RIGHT_EYE)
|
63 |
+
def eye_aspect_ratio(eye_points):
|
64 |
+
v1 = np.linalg.norm(eye_points[1] - eye_points[5])
|
65 |
+
v2 = np.linalg.norm(eye_points[2] - eye_points[4])
|
66 |
+
h = np.linalg.norm(eye_points[0] - eye_points[3])
|
67 |
+
return (v1 + v2) / (2.0 * h) if h > 0 else 0.0
|
68 |
+
left_ear = eye_aspect_ratio(left_eye_points)
|
69 |
+
right_ear = eye_aspect_ratio(right_eye_points)
|
70 |
+
return (left_ear + right_ear) / 2.0
|
71 |
+
|
72 |
+
def calculate_mar(landmarks): # Keep as is
|
73 |
+
if not landmarks: return 0.0
|
74 |
+
MOUTH_OUTLINE = [61, 291, 39, 181, 0, 17, 269, 405]
|
75 |
+
mouth_points = np.array([(landmarks.landmark[idx].x, landmarks.landmark[idx].y) for idx in MOUTH_OUTLINE])
|
76 |
+
height = np.mean([
|
77 |
+
np.linalg.norm(mouth_points[1] - mouth_points[5]),
|
78 |
+
np.linalg.norm(mouth_points[2] - mouth_points[6]),
|
79 |
+
np.linalg.norm(mouth_points[3] - mouth_points[7])
|
80 |
+
])
|
81 |
+
width = np.linalg.norm(mouth_points[0] - mouth_points[4])
|
82 |
+
return height / width if width > 0 else 0.0
|
83 |
|
84 |
+
def calculate_eyebrow_position(landmarks): # Keep as is
|
85 |
+
if not landmarks: return 0.0
|
86 |
+
LEFT_EYEBROW = 107; RIGHT_EYEBROW = 336
|
87 |
+
LEFT_EYE = 159; RIGHT_EYE = 386
|
88 |
+
left_eyebrow_y = landmarks.landmark[LEFT_EYEBROW].y
|
89 |
+
right_eyebrow_y = landmarks.landmark[RIGHT_EYEBROW].y
|
90 |
+
left_eye_y = landmarks.landmark[LEFT_EYE].y
|
91 |
+
right_eye_y = landmarks.landmark[RIGHT_EYE].y
|
92 |
+
left_distance = left_eye_y - left_eyebrow_y
|
93 |
+
right_distance = right_eye_y - right_eyebrow_y
|
94 |
+
avg_distance = (left_distance + right_distance) / 2.0
|
95 |
+
normalized = (avg_distance - 0.02) / 0.06 # Approximate normalization
|
96 |
+
return max(0.0, min(1.0, normalized))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
def estimate_head_pose(landmarks): # Keep as is
|
99 |
+
if not landmarks: return 0.0, 0.0
|
100 |
+
NOSE_TIP = 4; LEFT_EYE = 159; RIGHT_EYE = 386
|
101 |
+
nose = np.array([landmarks.landmark[NOSE_TIP].x, landmarks.landmark[NOSE_TIP].y, landmarks.landmark[NOSE_TIP].z])
|
102 |
+
left_eye = np.array([landmarks.landmark[LEFT_EYE].x, landmarks.landmark[LEFT_EYE].y, landmarks.landmark[LEFT_EYE].z])
|
103 |
+
right_eye = np.array([landmarks.landmark[RIGHT_EYE].x, landmarks.landmark[RIGHT_EYE].y, landmarks.landmark[RIGHT_EYE].z])
|
104 |
+
eye_level = (left_eye[1] + right_eye[1]) / 2.0
|
105 |
+
vertical_tilt = nose[1] - eye_level
|
106 |
+
horizontal_mid = (left_eye[0] + right_eye[0]) / 2.0
|
107 |
+
horizontal_tilt = nose[0] - horizontal_mid
|
108 |
+
vertical_tilt = max(-1.0, min(1.0, vertical_tilt * 10)) # Normalize approx
|
109 |
+
horizontal_tilt = max(-1.0, min(1.0, horizontal_tilt * 10)) # Normalize approx
|
110 |
+
return vertical_tilt, horizontal_tilt
|
111 |
+
|
112 |
+
def calculate_metrics(landmarks): # Keep as is
|
113 |
+
if not landmarks:
|
114 |
+
# Return default/neutral values when no face is detected
|
115 |
+
return {metric: 0.5 for metric in metrics}
|
116 |
+
# --- Calculations --- (Same as before)
|
117 |
+
ear = calculate_ear(landmarks)
|
118 |
+
mar = calculate_mar(landmarks)
|
119 |
+
eyebrow_position = calculate_eyebrow_position(landmarks)
|
120 |
+
vertical_tilt, horizontal_tilt = estimate_head_pose(landmarks)
|
121 |
+
cognitive_load = max(0, min(1, 1.0 - ear * 2.5))
|
122 |
+
valence = max(0, min(1, mar * 2.0 * (1.0 - eyebrow_position)))
|
123 |
+
arousal = max(0, min(1, (mar + (1.0 - ear) + eyebrow_position) / 3.0))
|
124 |
+
dominance = max(0, min(1, 0.5 + vertical_tilt))
|
125 |
+
neuroticism = max(0, min(1, (cognitive_load * 0.6) + ((1.0 - valence) * 0.4)))
|
126 |
+
emotional_stability = 1.0 - neuroticism
|
127 |
+
extraversion = max(0, min(1, (arousal * 0.5) + (valence * 0.5)))
|
128 |
+
openness = max(0, min(1, 0.5 + ((mar - 0.5) * 0.5)))
|
129 |
+
agreeableness = max(0, min(1, (valence * 0.7) + ((1.0 - arousal) * 0.3)))
|
130 |
+
conscientiousness = max(0, min(1, (1.0 - abs(arousal - 0.5)) * 0.7 + (emotional_stability * 0.3)))
|
131 |
+
stress_index = max(0, min(1, (cognitive_load * 0.5) + (eyebrow_position * 0.3) + ((1.0 - valence) * 0.2)))
|
132 |
+
engagement_level = max(0, min(1, (arousal * 0.7) + ((1.0 - abs(horizontal_tilt)) * 0.3)))
|
133 |
+
# --- Return dictionary ---
|
134 |
return {
|
135 |
+
'valence': valence, 'arousal': arousal, 'dominance': dominance,
|
136 |
+
'cognitive_load': cognitive_load, 'emotional_stability': emotional_stability,
|
137 |
+
'openness': openness, 'agreeableness': agreeableness, 'neuroticism': neuroticism,
|
138 |
+
'conscientiousness': conscientiousness, 'extraversion': extraversion,
|
139 |
+
'stress_index': stress_index, 'engagement_level': engagement_level
|
|
|
|
|
|
|
|
|
140 |
}
|
141 |
|
142 |
+
|
143 |
+
# --- Visualization Function (Keep as is, ensure it handles None input) ---
|
144 |
+
def update_metrics_visualization(metrics_values):
|
145 |
+
# Create a blank figure if no metrics are available
|
146 |
+
if not metrics_values:
|
147 |
+
fig, ax = plt.subplots(figsize=(10, 8)) # Match approx size
|
148 |
+
ax.text(0.5, 0.5, "Waiting for analysis...", ha='center', va='center')
|
149 |
+
ax.axis('off')
|
150 |
+
# Ensure background matches Gradio theme potentially
|
151 |
+
fig.patch.set_facecolor('#FFFFFF') # Set background if needed
|
152 |
+
ax.set_facecolor('#FFFFFF')
|
153 |
+
return fig
|
154 |
+
|
155 |
+
# Calculate grid size
|
156 |
+
num_metrics = len([k for k in metrics_values if k != 'timestamp'])
|
157 |
+
nrows = (num_metrics + 2) // 3
|
158 |
+
fig, axs = plt.subplots(nrows, 3, figsize=(10, nrows * 2.5), facecolor='#FFFFFF') # Match background
|
159 |
+
axs = axs.flatten()
|
160 |
+
|
161 |
+
# Colormap and normalization
|
162 |
+
colors = [(0.1, 0.1, 0.9), (0.9, 0.9, 0.1), (0.9, 0.1, 0.1)] # Blue to Yellow to Red
|
163 |
+
cmap = LinearSegmentedColormap.from_list("custom_cmap", colors, N=100)
|
164 |
+
norm = plt.Normalize(0, 1)
|
165 |
+
|
166 |
+
metric_idx = 0
|
167 |
+
for key, value in metrics_values.items():
|
168 |
+
if key == 'timestamp': continue
|
169 |
+
|
170 |
+
ax = axs[metric_idx]
|
171 |
+
ax.set_title(key.replace('_', ' ').title(), fontsize=10)
|
172 |
+
ax.set_xlim(0, 1); ax.set_ylim(0, 0.5); ax.set_aspect('equal'); ax.axis('off')
|
173 |
+
ax.set_facecolor('#FFFFFF') # Match background
|
174 |
+
|
175 |
+
r = 0.4 # radius
|
176 |
+
theta = np.linspace(np.pi, 0, 100) # Flipped for gauge direction
|
177 |
+
x_bg = 0.5 + r * np.cos(theta); y_bg = 0.1 + r * np.sin(theta)
|
178 |
+
ax.plot(x_bg, y_bg, 'k-', linewidth=3, alpha=0.2) # Background arc
|
179 |
+
|
180 |
+
# Value arc calculation
|
181 |
+
value_angle = np.pi * (1 - value) # Map value [0,1] to angle [pi, 0]
|
182 |
+
# Ensure there are at least 2 points for the line segment, even for value=0
|
183 |
+
num_points = max(2, int(100 * value))
|
184 |
+
value_theta = np.linspace(np.pi, value_angle, num_points)
|
185 |
+
x_val = 0.5 + r * np.cos(value_theta); y_val = 0.1 + r * np.sin(value_theta)
|
186 |
+
|
187 |
+
# Create line segments for coloring if there are points to draw
|
188 |
+
if len(x_val) > 1:
|
189 |
+
points = np.array([x_val, y_val]).T.reshape(-1, 1, 2)
|
190 |
+
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
191 |
+
segment_values = np.linspace(0, value, len(segments)) # Color based on value
|
192 |
+
lc = LineCollection(segments, cmap=cmap, norm=norm)
|
193 |
+
lc.set_array(segment_values); lc.set_linewidth(5)
|
194 |
+
ax.add_collection(lc)
|
195 |
+
|
196 |
+
# Add value text
|
197 |
+
ax.text(0.5, 0.15, f"{value:.2f}", ha='center', va='center', fontsize=11,
|
198 |
+
fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, boxstyle='round,pad=0.2'))
|
199 |
+
metric_idx += 1
|
200 |
+
|
201 |
+
# Hide unused subplots
|
202 |
+
for i in range(metric_idx, len(axs)):
|
203 |
+
axs[i].axis('off')
|
204 |
+
|
205 |
+
plt.tight_layout(pad=0.5)
|
206 |
+
return fig
|
207 |
+
|
208 |
+
|
209 |
+
# --- Gradio Processing Function ---
|
210 |
+
app_start_time = time.time() # Use a fixed start time for the app session
|
211 |
+
|
212 |
+
def process_frame(
|
213 |
+
frame,
|
214 |
+
analysis_freq,
|
215 |
+
analyze_flag,
|
216 |
+
# --- State variables ---
|
217 |
+
metrics_data_state,
|
218 |
+
last_analysis_time_state,
|
219 |
+
latest_metrics_state,
|
220 |
+
latest_landmarks_state
|
221 |
+
):
|
222 |
+
|
223 |
+
if frame is None:
|
224 |
+
# Return default/empty outputs if no frame
|
225 |
+
default_plot = update_metrics_visualization(latest_metrics_state)
|
226 |
+
return frame, default_plot, metrics_data_state, \
|
227 |
+
metrics_data_state, last_analysis_time_state, \
|
228 |
+
latest_metrics_state, latest_landmarks_state
|
229 |
+
|
230 |
+
annotated_frame = frame.copy()
|
231 |
+
current_time = time.time()
|
232 |
+
perform_analysis = False
|
233 |
+
current_landmarks = None # Landmarks detected in *this* frame run
|
234 |
+
|
235 |
+
# --- Decide whether to perform analysis ---
|
236 |
+
if analyze_flag and face_mesh and (current_time - last_analysis_time_state >= analysis_freq):
|
237 |
+
perform_analysis = True
|
238 |
+
last_analysis_time_state = current_time # Update time immediately
|
239 |
+
|
240 |
+
# --- Perform Analysis (if flag is set and frequency met) ---
|
241 |
+
if perform_analysis:
|
242 |
+
current_landmarks = extract_face_landmarks(frame, face_mesh)
|
243 |
+
calculated_metrics = calculate_metrics(current_landmarks)
|
244 |
+
|
245 |
+
# Update state variables
|
246 |
+
latest_landmarks_state = current_landmarks # Store landmarks from this run
|
247 |
+
latest_metrics_state = calculated_metrics
|
248 |
+
|
249 |
+
# Log data only if a face was detected
|
250 |
+
if current_landmarks:
|
251 |
+
elapsed_time = current_time - app_start_time
|
252 |
+
new_row = {'timestamp': elapsed_time, **calculated_metrics}
|
253 |
+
new_row_df = pd.DataFrame([new_row])
|
254 |
+
metrics_data_state = pd.concat([metrics_data_state, new_row_df], ignore_index=True)
|
255 |
+
|
256 |
+
# --- Drawing ---
|
257 |
+
# Always try to draw the latest known landmarks stored in state
|
258 |
+
landmarks_to_draw = latest_landmarks_state
|
259 |
+
if landmarks_to_draw:
|
260 |
+
mp_drawing.draw_landmarks(
|
261 |
+
image=annotated_frame,
|
262 |
+
landmark_list=landmarks_to_draw,
|
263 |
+
connections=mp_face_mesh.FACEMESH_TESSELATION,
|
264 |
+
landmark_drawing_spec=None,
|
265 |
+
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style())
|
266 |
+
mp_drawing.draw_landmarks(
|
267 |
+
image=annotated_frame,
|
268 |
+
landmark_list=landmarks_to_draw,
|
269 |
+
connections=mp_face_mesh.FACEMESH_CONTOURS,
|
270 |
+
landmark_drawing_spec=None,
|
271 |
+
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_contours_style())
|
272 |
+
|
273 |
+
# --- Generate Metrics Plot ---
|
274 |
+
metrics_plot = update_metrics_visualization(latest_metrics_state)
|
275 |
+
|
276 |
+
# --- Return updated values for outputs AND state ---
|
277 |
+
return annotated_frame, metrics_plot, metrics_data_state, \
|
278 |
+
metrics_data_state, last_analysis_time_state, \
|
279 |
+
latest_metrics_state, latest_landmarks_state
|
280 |
+
|
281 |
+
|
282 |
+
# --- Create Gradio Interface ---
|
283 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Gradio Facial Analysis") as iface:
|
284 |
+
gr.Markdown("# Basic Facial Analysis (Gradio Version)")
|
285 |
+
gr.Markdown("Analyzes webcam feed for facial landmarks and estimates metrics. *Estimations are for demonstration only.*")
|
286 |
+
|
287 |
+
# Define State Variables
|
288 |
+
# Need to initialize them properly
|
289 |
+
metrics_data = gr.State(value=initial_metrics_df.copy())
|
290 |
+
last_analysis_time = gr.State(value=time.time())
|
291 |
+
latest_metrics = gr.State(value=None) # Initially no metrics
|
292 |
+
latest_landmarks = gr.State(value=None) # Initially no landmarks
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
with gr.Column(scale=1):
|
296 |
+
webcam_input = gr.Image(sources="webcam", streaming=True, label="Webcam Input", type="numpy")
|
297 |
+
analysis_freq_slider = gr.Slider(minimum=0.5, maximum=5.0, step=0.5, value=1.0, label="Analysis Frequency (s)")
|
298 |
+
analyze_checkbox = gr.Checkbox(value=True, label="Enable Analysis Calculation")
|
299 |
+
status_text = gr.Markdown("Status: Analysis Enabled" if analyze_checkbox.value else "Status: Analysis Paused") # Initial status text
|
300 |
+
|
301 |
+
# Update status text dynamically (though Gradio handles this implicitly via reruns)
|
302 |
+
# Might need a more complex setup with event listeners if precise text update is needed without full rerun
|
303 |
+
with gr.Column(scale=1):
|
304 |
+
processed_output = gr.Image(label="Processed Feed", type="numpy")
|
305 |
+
metrics_plot_output = gr.Plot(label="Estimated Metrics")
|
306 |
+
dataframe_output = gr.Dataframe(label="Data Log", headers=['timestamp'] + metrics, wrap=True, height=300)
|
307 |
+
|
308 |
+
|
309 |
+
# Define the connections for the live interface
|
310 |
+
webcam_input.stream(
|
311 |
+
fn=process_frame,
|
312 |
+
inputs=[
|
313 |
+
webcam_input,
|
314 |
+
analysis_freq_slider,
|
315 |
+
analyze_checkbox,
|
316 |
+
# Pass state variables as inputs
|
317 |
+
metrics_data,
|
318 |
+
last_analysis_time,
|
319 |
+
latest_metrics,
|
320 |
+
latest_landmarks
|
321 |
+
],
|
322 |
+
outputs=[
|
323 |
+
processed_output,
|
324 |
+
metrics_plot_output,
|
325 |
+
dataframe_output,
|
326 |
+
# Return updated state variables
|
327 |
+
metrics_data,
|
328 |
+
last_analysis_time,
|
329 |
+
latest_metrics,
|
330 |
+
latest_landmarks
|
331 |
+
]
|
332 |
+
)
|
333 |
+
|
334 |
+
# --- Launch the App ---
|
335 |
if __name__ == "__main__":
|
336 |
+
if face_mesh is None:
|
337 |
+
print("Face Mesh could not be initialized. Gradio app might not function correctly.")
|
338 |
+
iface.launch(debug=True) # Enable debug for more detailed errors if needed
|
339 |
+
|
340 |
+
# Optional: Add cleanup logic if needed, although launching blocks execution
|
341 |
+
# try:
|
342 |
+
# iface.launch()
|
343 |
+
# finally:
|
344 |
+
# if face_mesh:
|
345 |
+
# face_mesh.close() # Close mediapipe resources if app is stopped
|
346 |
+
# print("MediaPipe FaceMesh closed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|