ans123 commited on
Commit
50238a6
·
verified ·
1 Parent(s): 04312e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -24
app.py CHANGED
@@ -1,15 +1,7 @@
1
  import gradio as gr
2
- import pandas as pd
3
- import torch
4
- from transformers import pipeline
5
-
6
- # Load the Zephyr-7B-Beta model pipeline
7
- pipe = pipeline(
8
- "text-generation",
9
- model="HuggingFaceH4/zephyr-7b-beta",
10
- torch_dtype=torch.bfloat16,
11
- device_map="auto"
12
- )
13
 
14
  # Define the initial system message
15
  system_message = {
@@ -40,11 +32,7 @@ def submit_questionnaire(name, age, location, gender, ethnicity, height, weight,
40
  "Everyday Style": everyday_style
41
  }
42
 
43
- df = pd.DataFrame([questionnaire_data]) # Create DataFrame from dictionary
44
-
45
- # Append to CSV file
46
- df.to_csv("questionnaire_responses.csv", mode='a', header=not pd.io.common.file_exists("questionnaire_responses.csv"), index=False)
47
-
48
  return "Thank you for completing the questionnaire!"
49
 
50
  # Function to handle chat
@@ -53,16 +41,15 @@ def chat(user_input, messages):
53
  # Append user message to the conversation history
54
  messages.append({"role": "user", "content": user_input})
55
 
56
- # Prepare the input for the model
57
  input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
58
 
59
- # Generate a response using the pipeline
60
  try:
61
- response = pipe(input_text, max_new_tokens=256, return_full_text=False)
62
-
63
- # Extract the assistant's response
64
- response_content = response[0]['generated_text'].strip()
65
-
66
  # Store assistant response in the chat history
67
  messages.append({"role": "assistant", "content": response_content})
68
 
@@ -74,7 +61,7 @@ def chat(user_input, messages):
74
 
75
  # Gradio Interface
76
  with gr.Blocks() as demo:
77
- gr.Markdown("## FRIDAY")
78
 
79
  # Sidebar for user inputs
80
  with gr.Row():
 
1
  import gradio as gr
2
+
3
+ # Load the Qwen2.5-72B-Instruct model
4
+ model = gr.load("models/Qwen/Qwen2.5-72B-Instruct")
 
 
 
 
 
 
 
 
5
 
6
  # Define the initial system message
7
  system_message = {
 
32
  "Everyday Style": everyday_style
33
  }
34
 
35
+ # Here you can add logic to save the data as required, e.g., in a CSV
 
 
 
 
36
  return "Thank you for completing the questionnaire!"
37
 
38
  # Function to handle chat
 
41
  # Append user message to the conversation history
42
  messages.append({"role": "user", "content": user_input})
43
 
44
+ # Prepare input for the model
45
  input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
46
 
47
+ # Generate a response using the Qwen model
48
  try:
49
+ response = model(input_text) # Call the model directly
50
+ # Assuming the response is a list with one dictionary containing 'generated_text'
51
+ response_content = response[0]['generated_text'].strip() # Access the generated text
52
+
 
53
  # Store assistant response in the chat history
54
  messages.append({"role": "assistant", "content": response_content})
55
 
 
61
 
62
  # Gradio Interface
63
  with gr.Blocks() as demo:
64
+ gr.Markdown("## Fashion Assistant Chatbot")
65
 
66
  # Sidebar for user inputs
67
  with gr.Row():