Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import pipeline
|
4 |
|
5 |
# Load the Qwen2.5-72B-Instruct model
|
6 |
-
|
7 |
-
"text-generation",
|
8 |
-
model="HuggingFaceH4/Qwen2.5-72B-Instruct",
|
9 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
10 |
-
device_map="auto",
|
11 |
-
)
|
12 |
-
|
13 |
-
# Initial messages list for chat history
|
14 |
-
messages = [
|
15 |
-
{"role": "system", "content": "You are an experienced Fashion designer who starts conversation with proper greeting, "
|
16 |
-
"giving valuable and catchy fashion advice and suggestions, stays to the point and precise."}
|
17 |
-
]
|
18 |
-
|
19 |
-
# Function to reset the chat
|
20 |
-
def reset_chat():
|
21 |
-
global messages
|
22 |
-
messages = [] # Reset the message history
|
23 |
-
return [], "New Chat"
|
24 |
-
|
25 |
-
# Function to handle questionnaire submission
|
26 |
-
def submit_questionnaire(name, age, location, gender, ethnicity, height, weight,
|
27 |
-
style_preference, color_palette, everyday_style):
|
28 |
-
# Store questionnaire responses as needed
|
29 |
-
# Placeholder logic for storing responses
|
30 |
-
return "Thank you for completing the questionnaire!"
|
31 |
-
|
32 |
-
# Function to handle chat
|
33 |
-
def chat(user_input):
|
34 |
-
global messages
|
35 |
-
if user_input:
|
36 |
-
# Append user message to the conversation history
|
37 |
-
messages.append({"role": "user", "content": user_input})
|
38 |
-
|
39 |
-
# Prepare input for the model
|
40 |
-
chat_input = "The assistant is a fashion designer. Respond to the user based on the following messages:\n"
|
41 |
-
for msg in messages:
|
42 |
-
chat_input += f"{msg['role']}: {msg['content']}\n"
|
43 |
-
|
44 |
-
# Generate a response using the model
|
45 |
-
try:
|
46 |
-
response = pipe(chat_input, max_new_tokens=256) # Using the pipeline
|
47 |
-
|
48 |
-
# Check if response is valid and structured correctly
|
49 |
-
if isinstance(response, list) and len(response) > 0:
|
50 |
-
response_content = response[0]['generated_text'].strip() # Accessing generated text
|
51 |
-
else:
|
52 |
-
response_content = "Sorry, I couldn't generate a response."
|
53 |
-
|
54 |
-
except Exception as e:
|
55 |
-
response_content = f"Error: {str(e)}"
|
56 |
-
|
57 |
-
# Store assistant response in the chat history
|
58 |
-
messages.append({"role": "assistant", "content": response_content})
|
59 |
-
|
60 |
-
return messages, response_content
|
61 |
-
return messages, ""
|
62 |
-
|
63 |
-
# Gradio Interface
|
64 |
-
with gr.Blocks() as demo:
|
65 |
-
gr.Markdown("## Fashion Assistant Chatbot")
|
66 |
-
|
67 |
-
# Sidebar for user inputs
|
68 |
-
with gr.Row():
|
69 |
-
with gr.Column():
|
70 |
-
name = gr.Textbox(label="Name")
|
71 |
-
age = gr.Number(label="Age", value=25, minimum=1, maximum=100)
|
72 |
-
location = gr.Textbox(label="Location")
|
73 |
-
gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"])
|
74 |
-
ethnicity = gr.Radio(label="Ethnicity", choices=["Asian", "Black", "Hispanic", "White", "Other"])
|
75 |
-
height = gr.Number(label="Height (cm)", value=170, minimum=50, maximum=250)
|
76 |
-
weight = gr.Number(label="Weight (kg)", value=70, minimum=20, maximum=200)
|
77 |
-
|
78 |
-
with gr.Column():
|
79 |
-
submit_btn = gr.Button("Submit Questionnaire")
|
80 |
-
reset_btn = gr.Button("Reset Chat")
|
81 |
-
|
82 |
-
# Questionnaire with fashion-related questions
|
83 |
-
style_preference = gr.Radio(label="Which style do you prefer the most?", choices=["Casual", "Formal", "Streetwear", "Athleisure", "Baggy"])
|
84 |
-
color_palette = gr.Radio(label="What color palette do you wear often?", choices=["Neutrals", "Bright Colors", "Pastels", "Dark Shades"])
|
85 |
-
everyday_style = gr.Radio(label="How would you describe your everyday style?", choices=["Relaxed", "Trendy", "Elegant", "Bold"])
|
86 |
-
|
87 |
-
# Chat functionality
|
88 |
-
chatbox = gr.Chatbot(type='messages')
|
89 |
-
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
90 |
-
|
91 |
-
# Connect the buttons to their respective functions
|
92 |
-
output_message = gr.Textbox(label="Output Message")
|
93 |
-
submit_btn.click(submit_questionnaire, inputs=[name, age, location, gender, ethnicity, height, weight,
|
94 |
-
style_preference, color_palette, everyday_style], outputs=output_message)
|
95 |
-
|
96 |
-
reset_btn.click(reset_chat, outputs=[chatbox, output_message]) # Corrected outputs
|
97 |
-
user_input.submit(chat, inputs=user_input, outputs=[chatbox, user_input])
|
98 |
-
|
99 |
-
# Run the app
|
100 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
# Load the Qwen2.5-72B-Instruct model
|
4 |
+
model = gr.load("models/Qwen/Qwen2.5-72B-Instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|