Spaces:
Configuration error
Configuration error
File size: 45,725 Bytes
2f82426 b0b077f 2f82426 b0b077f 2f82426 2b82b08 2f82426 b0b077f 2f82426 2b82b08 2f82426 b0b077f 2f82426 b0b077f 2b82b08 2f82426 b0b077f 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 b0b077f 2f82426 b0b077f 2f82426 2b82b08 2f82426 2b82b08 2f82426 b0b077f 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 2f82426 2b82b08 b0b077f 2f82426 b0b077f 2f82426 2b82b08 2f82426 2b82b08 b0b077f 2f82426 b0b077f 2f82426 2b82b08 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2b82b08 b0b077f 2f82426 b0b077f 2f82426 2b82b08 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 2b82b08 b0b077f 2f82426 2b82b08 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 b0b077f 2f82426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
import gradio as gr
import cv2
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.collections import LineCollection
import os
import datetime
import tempfile
from typing import Dict, List, Tuple, Optional, Union, Any
import google.generativeai as genai
from PIL import Image
import json
import warnings
from deepface import DeepFace
import base64
import io
from pathlib import Path
import traceback
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
# --- Constants ---
VIDEO_FPS = 30 # Target FPS for saved video
CSV_FILENAME_TEMPLATE = "facial_analysis_{timestamp}.csv"
VIDEO_FILENAME_TEMPLATE = "processed_{timestamp}.mp4"
TEMP_DIR = Path("temp_frames")
TEMP_DIR.mkdir(exist_ok=True)
# --- Configure Google Gemini API ---
print("Configuring Google Gemini API...")
try:
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
genai.configure(api_key=GOOGLE_API_KEY)
# Use gemini-1.5-flash for quick responses
model = genai.GenerativeModel('gemini-1.5-flash')
GEMINI_ENABLED = True
print("Google Gemini API configured successfully.")
except Exception as e:
print(f"WARNING: Failed to configure Google Gemini API: {e}")
print("Running with simulated Gemini API responses.")
GEMINI_ENABLED = False
# --- Initialize OpenCV face detector for backup ---
print("Initializing OpenCV face detector...")
try:
# Use OpenCV's built-in face detector as backup
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Check if the face detector loaded successfully
if face_cascade.empty():
print("WARNING: Failed to load face cascade classifier")
else:
print("OpenCV face detector initialized successfully.")
except Exception as e:
print(f"ERROR initializing OpenCV face detector: {e}")
face_cascade = None
# --- Metrics Definition ---
metrics = [
"valence", "arousal", "dominance", "cognitive_load",
"emotional_stability", "openness", "agreeableness",
"neuroticism", "conscientiousness", "extraversion",
"stress_index", "engagement_level"
]
# DeepFace emotion mapping
emotion_mapping = {
"angry": {"valence": 0.2, "arousal": 0.8, "dominance": 0.7},
"disgust": {"valence": 0.2, "arousal": 0.6, "dominance": 0.5},
"fear": {"valence": 0.2, "arousal": 0.8, "dominance": 0.3},
"happy": {"valence": 0.9, "arousal": 0.7, "dominance": 0.6},
"sad": {"valence": 0.3, "arousal": 0.4, "dominance": 0.3},
"surprise": {"valence": 0.6, "arousal": 0.9, "dominance": 0.5},
"neutral": {"valence": 0.5, "arousal": 0.5, "dominance": 0.5}
}
ad_context_columns = ["ad_description", "ad_detail", "ad_type", "gemini_ad_analysis"]
user_state_columns = ["user_state", "enhanced_user_state"]
all_columns = ['timestamp', 'frame_number'] + metrics + ad_context_columns + user_state_columns
initial_metrics_df = pd.DataFrame(columns=all_columns)
# --- Gemini API Functions ---
def call_gemini_api_for_ad(description, detail, ad_type):
"""
Uses Google Gemini to analyze ad context.
"""
print(f"Analyzing ad context: '{description}' ({ad_type})")
if not GEMINI_ENABLED:
# Simulated response
analysis = f"Simulated analysis: Ad='{description or 'N/A'}' ({ad_type}), Focus='{detail or 'N/A'}'."
if not description and not detail:
analysis = "No ad context provided."
print(f"Simulated Gemini Result: {analysis}")
return analysis
else:
try:
prompt = f"""
Please analyze this advertisement context:
- Description: {description}
- Detail focus: {detail}
- Type/Genre: {ad_type}
Provide a concise analysis of what emotional and cognitive responses might be expected from viewers.
Limit your response to 100 words.
"""
response = model.generate_content(prompt)
return response.text
except Exception as e:
print(f"Error calling Gemini for ad context: {e}")
return f"Error analyzing ad context: {str(e)}"
def interpret_metrics_with_gemini(metrics_dict, deepface_results=None, ad_context=None):
"""
Uses Google Gemini to interpret facial metrics and DeepFace results
to determine user state.
"""
if not metrics_dict and not deepface_results:
return "No metrics", "No facial data detected"
if not GEMINI_ENABLED:
# Basic rule-based simulation for user state
valence = metrics_dict.get('valence', 0.5) if metrics_dict else 0.5
arousal = metrics_dict.get('arousal', 0.5) if metrics_dict else 0.5
# Extract emotion from DeepFace if available
dominant_emotion = "neutral"
if deepface_results and "emotion" in deepface_results:
emotion_dict = deepface_results["emotion"]
dominant_emotion = max(emotion_dict.items(), key=lambda x: x[1])[0]
# Simple rule-based simulation
state = dominant_emotion.capitalize() if dominant_emotion != "neutral" else "Neutral"
if valence > 0.65 and arousal > 0.55:
state = "Positive, Engaged"
elif valence < 0.4 and arousal > 0.6:
state = "Stressed, Negative"
enhanced_state = f"The viewer appears {state.lower()} while watching this content."
return state, enhanced_state
else:
try:
# Format metrics for Gemini
metrics_formatted = ""
if metrics_dict:
metrics_formatted = "\nMetrics (0-1 scale):\n" + "\n".join([f"- {k.replace('_', ' ').title()}: {v:.2f}" for k, v in metrics_dict.items()
if k not in ('timestamp', 'frame_number')])
# Format DeepFace results
deepface_formatted = ""
if deepface_results and "emotion" in deepface_results:
emotion_dict = deepface_results["emotion"]
deepface_formatted = "\nDeepFace emotions:\n" + "\n".join([f"- {k.title()}: {v:.2f}" for k, v in emotion_dict.items()])
# Include ad context if available
ad_info = ""
if ad_context:
ad_desc = ad_context.get('ad_description', 'N/A')
ad_type = ad_context.get('ad_type', 'N/A')
ad_info = f"\nThey are watching an advertisement: {ad_desc} (Type: {ad_type})"
prompt = f"""
Analyze the facial expression and emotion of a person watching an advertisement{ad_info}.
Use these combined inputs:{metrics_formatted}{deepface_formatted}
Provide two outputs:
1. User State: A short 1-3 word description of their emotional/cognitive state
2. Enhanced Analysis: A detailed 1-2 sentence interpretation of their reaction to the content
Format as JSON: {{"user_state": "STATE", "enhanced_user_state": "DETAILED ANALYSIS"}}
"""
response = model.generate_content(prompt)
try:
# Try to parse as JSON
result = json.loads(response.text)
return result.get("user_state", "Uncertain"), result.get("enhanced_user_state", "Analysis unavailable")
except json.JSONDecodeError:
# If not valid JSON, try to extract manually
text = response.text
if "user_state" in text and "enhanced_user_state" in text:
parts = text.split("enhanced_user_state")
user_state = parts[0].split("user_state")[1].replace('"', '').replace(':', '').replace(',', '').strip()
enhanced = parts[1].replace('"', '').replace(':', '').replace('}', '').strip()
return user_state, enhanced
else:
# Just return the raw text as enhanced state
return "Analyzed", text
except Exception as e:
print(f"Error calling Gemini for metric interpretation: {e}")
traceback.print_exc()
return "Error", f"Error analyzing facial metrics: {str(e)}"
# --- DeepFace Analysis Function ---
def analyze_face_with_deepface(image):
"""Analyze facial emotions and attributes using DeepFace"""
if image is None:
return None
try:
# Convert to RGB for DeepFace if needed
if len(image.shape) == 3 and image.shape[2] == 3:
# Check if BGR and convert to RGB if needed
if np.mean(image[:,:,0]) < np.mean(image[:,:,2]): # Rough BGR check
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
else:
# Handle grayscale or other formats
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Save image to temp file (DeepFace sometimes works better with files)
temp_img = f"temp_frames/temp_analysis_{time.time()}.jpg"
cv2.imwrite(temp_img, image_rgb)
# Analyze with DeepFace
analysis = DeepFace.analyze(
img_path=temp_img,
actions=['emotion'],
enforce_detection=False, # Don't throw error if face not detected
detector_backend='opencv' # Faster detection
)
# Remove temporary file
try:
os.remove(temp_img)
except:
pass
# Return the first face analysis (assuming single face)
if isinstance(analysis, list) and len(analysis) > 0:
return analysis[0]
else:
return analysis
except Exception as e:
print(f"DeepFace analysis error: {e}")
return None
# --- Face Detection Backup with OpenCV ---
def detect_face_opencv(image):
"""Detect faces using OpenCV cascade classifier as backup"""
if image is None or face_cascade is None:
return None
try:
# Convert to grayscale for detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
if len(faces) == 0:
return None
# Get the largest face by area
largest_face = max(faces, key=lambda rect: rect[2] * rect[3])
return {"rect": largest_face}
except Exception as e:
print(f"Error in OpenCV face detection: {e}")
return None
# --- Calculate Metrics from DeepFace Results ---
def calculate_metrics_from_deepface(deepface_results, ad_context=None):
"""
Calculate psychometric metrics from DeepFace analysis results
"""
if ad_context is None:
ad_context = {}
# Initialize default metrics
default_metrics = {m: 0.5 for m in metrics}
# If no facial data, return defaults
if not deepface_results or "emotion" not in deepface_results:
return default_metrics
# Extract emotion data from DeepFace
emotion_dict = deepface_results["emotion"]
# Find dominant emotion
dominant_emotion = max(emotion_dict.items(), key=lambda x: x[1])[0]
dominant_score = max(emotion_dict.items(), key=lambda x: x[1])[1] / 100.0 # Convert to 0-1 scale
# Get base values from emotion mapping
base_vals = emotion_mapping.get(dominant_emotion, {"valence": 0.5, "arousal": 0.5, "dominance": 0.5})
# Calculate primary metrics with confidence weighting
val = base_vals["valence"]
arsl = base_vals["arousal"]
dom = base_vals["dominance"]
# Add directional adjustments based on specific emotions
if dominant_emotion == "happy":
val += 0.1
elif dominant_emotion == "sad":
val -= 0.1
elif dominant_emotion == "angry":
arsl += 0.1
dom += 0.1
elif dominant_emotion == "fear":
arsl += 0.1
dom -= 0.1
# Illustrative Context Adjustments from ad
ad_type = ad_context.get('ad_type', 'Unknown')
gem_txt = str(ad_context.get('gemini_ad_analysis', '')).lower()
# Adjust based on ad context
val_adj = 0.1 if ad_type == 'Funny' or 'humor' in gem_txt else 0.0
arsl_adj = 0.1 if ad_type == 'Action' or 'exciting' in gem_txt else 0.0
# Apply adjustments
val = max(0, min(1, val + val_adj))
arsl = max(0, min(1, arsl + arsl_adj))
# Estimate cognitive load based on emotional intensity
cl = 0.5 # Default
if dominant_emotion in ["neutral"]:
cl = 0.3 # Lower cognitive load for neutral expression
elif dominant_emotion in ["surprise", "fear"]:
cl = 0.7 # Higher cognitive load for surprise/fear
# Calculate secondary metrics
neur = max(0, min(1, (cl * 0.6) + ((1.0 - val) * 0.4)))
em_stab = 1.0 - neur
extr = max(0, min(1, (arsl * 0.5) + (val * 0.5)))
open = max(0, min(1, 0.5 + (val - 0.5) * 0.5))
agree = max(0, min(1, (val * 0.7) + ((1.0 - arsl) * 0.3)))
consc = max(0, min(1, (1.0 - abs(arsl - 0.5)) * 0.7 + (em_stab * 0.3)))
stress = max(0, min(1, (cl * 0.5) + ((1.0 - val) * 0.5)))
engag = max(0, min(1, arsl * 0.7 + (val * 0.3)))
# Create metrics dictionary
calculated_metrics = {
'valence': val,
'arousal': arsl,
'dominance': dom,
'cognitive_load': cl,
'emotional_stability': em_stab,
'openness': open,
'agreeableness': agree,
'neuroticism': neur,
'conscientiousness': consc,
'extraversion': extr,
'stress_index': stress,
'engagement_level': engag
}
return calculated_metrics
def update_metrics_visualization(metrics_values):
"""Create a visualization of metrics"""
if not metrics_values:
fig, ax = plt.subplots(figsize=(10, 8))
ax.text(0.5, 0.5, "Waiting for facial metrics...", ha='center', va='center')
ax.axis('off')
fig.patch.set_facecolor('#FFFFFF')
ax.set_facecolor('#FFFFFF')
return fig
# Filter out non-metric keys
filtered_metrics = {k: v for k, v in metrics_values.items()
if k in metrics and isinstance(v, (int, float))}
if not filtered_metrics:
fig, ax = plt.subplots(figsize=(10, 8))
ax.text(0.5, 0.5, "No valid metrics available", ha='center', va='center')
ax.axis('off')
return fig
num_metrics = len(filtered_metrics)
nrows = (num_metrics + 2) // 3
fig, axs = plt.subplots(nrows, 3, figsize=(10, nrows * 2.5), facecolor='#FFFFFF')
axs = axs.flatten()
colors = [(0.1, 0.1, 0.9), (0.9, 0.9, 0.1), (0.9, 0.1, 0.1)]
cmap = LinearSegmentedColormap.from_list("custom_cmap", colors, N=100)
norm = plt.Normalize(0, 1)
metric_idx = 0
for key, value in filtered_metrics.items():
value = max(0.0, min(1.0, value)) # Clip value for safety
ax = axs[metric_idx]
ax.set_title(key.replace('_', ' ').title(), fontsize=10)
ax.set_xlim(0, 1)
ax.set_ylim(0, 0.5)
ax.set_aspect('equal')
ax.axis('off')
ax.set_facecolor('#FFFFFF')
r = 0.4
theta = np.linspace(np.pi, 0, 100)
x_bg = 0.5 + r * np.cos(theta)
y_bg = 0.1 + r * np.sin(theta)
ax.plot(x_bg, y_bg, 'k-', linewidth=3, alpha=0.2)
value_angle = np.pi * (1 - value)
num_points = max(2, int(100 * value))
value_theta = np.linspace(np.pi, value_angle, num_points)
x_val = 0.5 + r * np.cos(value_theta)
y_val = 0.1 + r * np.sin(value_theta)
if len(x_val) > 1:
points = np.array([x_val, y_val]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
segment_values = np.linspace(0, value, len(segments))
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(segment_values)
lc.set_linewidth(5)
ax.add_collection(lc)
ax.text(0.5, 0.15, f"{value:.2f}", ha='center', va='center', fontsize=11,
fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, boxstyle='round,pad=0.2'))
metric_idx += 1
for i in range(metric_idx, len(axs)):
axs[i].axis('off')
plt.tight_layout(pad=0.5)
return fig
def annotate_frame(frame, face_data=None, deepface_results=None, metrics=None, enhanced_state=None):
"""
Add facial annotations and metrics to a frame
"""
if frame is None:
return None
annotated = frame.copy()
# Draw face rectangle if available
if face_data and "rect" in face_data:
x, y, w, h = face_data["rect"]
cv2.rectangle(annotated, (x, y), (x + w, y + h), (0, 255, 0), 2)
elif deepface_results and "region" in deepface_results:
region = deepface_results["region"]
x, y, w, h = region["x"], region["y"], region["w"], region["h"]
cv2.rectangle(annotated, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Add emotion and metrics summary
if deepface_results or metrics:
# Format for display
h, w = annotated.shape[:2]
y_pos = 30 # Starting Y position
# Add emotion info if available from DeepFace
if deepface_results and "dominant_emotion" in deepface_results:
emotion_text = f"Emotion: {deepface_results['dominant_emotion'].capitalize()}"
text_size = cv2.getTextSize(emotion_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
cv2.rectangle(annotated, (10, y_pos - 20), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
cv2.putText(annotated, emotion_text, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_pos += 30
# Add enhanced user state if available
if enhanced_state:
# Truncate if too long
if len(enhanced_state) > 60:
enhanced_state = enhanced_state[:57] + "..."
# Draw background for text
text_size = cv2.getTextSize(enhanced_state, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
cv2.rectangle(annotated, (10, y_pos - 20), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
# Draw text
cv2.putText(annotated, enhanced_state, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_pos += 30
# Show top 3 metrics
if metrics:
top_metrics = sorted([(k, v) for k, v in metrics.items() if k in metrics],
key=lambda x: x[1], reverse=True)[:3]
for name, value in top_metrics:
metric_text = f"{name.replace('_', ' ').title()}: {value:.2f}"
text_size = cv2.getTextSize(metric_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
cv2.rectangle(annotated, (10, y_pos - 15), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
cv2.putText(annotated, metric_text, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
y_pos += 25
return annotated
# --- API 1: Video File Processing ---
def process_video_file(
video_file: Union[str, np.ndarray],
ad_description: str = "",
ad_detail: str = "",
ad_type: str = "Video",
sampling_rate: int = 5, # Process every Nth frame
save_processed_video: bool = True,
show_progress: bool = True
) -> Tuple[str, str, pd.DataFrame, List[np.ndarray]]:
"""
Process a video file and analyze facial expressions frame by frame
Args:
video_file: Path to video file or video array
ad_description: Description of the ad being watched
ad_detail: Detail focus of the ad
ad_type: Type of ad (Video, Image, Audio, Text, Funny, etc.)
sampling_rate: Process every Nth frame
save_processed_video: Whether to save the processed video with annotations
show_progress: Whether to show processing progress
Returns:
Tuple of (csv_path, processed_video_path, metrics_dataframe, processed_frames_list)
"""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = CSV_FILENAME_TEMPLATE.format(timestamp=timestamp)
video_path = VIDEO_FILENAME_TEMPLATE.format(timestamp=timestamp) if save_processed_video else None
# Setup ad context
gemini_result = call_gemini_api_for_ad(ad_description, ad_detail, ad_type)
ad_context = {
"ad_description": ad_description,
"ad_detail": ad_detail,
"ad_type": ad_type,
"gemini_ad_analysis": gemini_result
}
# Initialize capture
if isinstance(video_file, str):
cap = cv2.VideoCapture(video_file)
else:
# Create a temporary file for the video array
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "temp_video.mp4")
# Convert video array to file
if isinstance(video_file, np.ndarray) and len(video_file.shape) == 4: # Multiple frames
h, w = video_file[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_writer = cv2.VideoWriter(temp_path, fourcc, 30, (w, h))
for frame in video_file:
temp_writer.write(frame)
temp_writer.release()
cap = cv2.VideoCapture(temp_path)
elif isinstance(video_file, np.ndarray) and len(video_file.shape) == 3: # Single frame
# For single frame, just process it directly
metrics_data = []
processed_frames = []
# Process the single frame
deepface_results = analyze_face_with_deepface(video_file)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(video_file)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
row = {
'timestamp': 0.0,
'frame_number': 0,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
metrics_data.append(row)
# Annotate the frame
annotated_frame = annotate_frame(video_file, face_data, deepface_results, calculated_metrics, enhanced_state)
processed_frames.append(annotated_frame)
# Save processed image
if save_processed_video:
cv2.imwrite(video_path.replace('.mp4', '.jpg'), annotated_frame)
# Create DataFrame and save to CSV
metrics_df = pd.DataFrame(metrics_data)
if not metrics_df.empty:
metrics_df.to_csv(csv_path, index=False)
return csv_path, video_path.replace('.mp4', '.jpg') if save_processed_video else None, metrics_df, processed_frames
else:
print("Error: Invalid video input format")
return None, None, None, []
if not cap.isOpened():
print("Error: Could not open video.")
return None, None, None, []
# Get video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Initialize video writer if saving processed video
if save_processed_video:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(video_path, fourcc, fps / sampling_rate, (frame_width, frame_height))
# Process video frames
metrics_data = []
processed_frames = []
frame_count = 0
if show_progress:
print(f"Processing video with {total_frames} frames at {fps} FPS")
print(f"Ad Context: {ad_description} ({ad_type})")
while True:
ret, frame = cap.read()
if not ret:
break
# Only process every Nth frame (according to sampling_rate)
if frame_count % sampling_rate == 0:
if show_progress and frame_count % (sampling_rate * 10) == 0:
print(f"Processing frame {frame_count}/{total_frames} ({frame_count/total_frames*100:.1f}%)")
# Analyze with DeepFace
deepface_results = analyze_face_with_deepface(frame)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(frame)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
row = {
'timestamp': frame_count / fps,
'frame_number': frame_count,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
metrics_data.append(row)
# Annotate the frame
annotated_frame = annotate_frame(frame, face_data, deepface_results, calculated_metrics, enhanced_state)
if save_processed_video:
out.write(annotated_frame)
processed_frames.append(annotated_frame)
else:
# No face detected
if save_processed_video:
# Add text to frame
no_face_frame = frame.copy()
cv2.putText(no_face_frame, "No face detected", (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
out.write(no_face_frame)
processed_frames.append(no_face_frame)
frame_count += 1
# Release resources
cap.release()
if save_processed_video:
out.release()
# Create DataFrame and save to CSV
metrics_df = pd.DataFrame(metrics_data)
if not metrics_df.empty:
metrics_df.to_csv(csv_path, index=False)
if show_progress:
print(f"Video processing complete. Analyzed {len(metrics_data)} frames.")
print(f"Results saved to {csv_path}")
if save_processed_video:
print(f"Processed video saved to {video_path}")
# Return results
return csv_path, video_path, metrics_df, processed_frames
# --- API 2: Webcam Processing Function ---
def process_webcam_frame(
frame: np.ndarray,
ad_context: Dict[str, Any],
metrics_data: pd.DataFrame,
frame_count: int,
start_time: float
) -> Tuple[np.ndarray, Dict[str, float], str, pd.DataFrame]:
"""
Process a single webcam frame
Args:
frame: Input frame from webcam
ad_context: Ad context dictionary
metrics_data: DataFrame to accumulate metrics
frame_count: Current frame count
start_time: Start time of the session
Returns:
Tuple of (annotated_frame, metrics_dict, enhanced_state, updated_metrics_df)
"""
if frame is None:
return None, None, None, metrics_data
# Analyze with DeepFace
deepface_results = analyze_face_with_deepface(frame)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(frame)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
current_time = time.time()
row = {
'timestamp': current_time - start_time,
'frame_number': frame_count,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
# Add row to DataFrame
new_row_df = pd.DataFrame([row], columns=all_columns)
metrics_data = pd.concat([metrics_data, new_row_df], ignore_index=True)
# Annotate the frame
annotated_frame = annotate_frame(frame, face_data, deepface_results, calculated_metrics, enhanced_state)
return annotated_frame, calculated_metrics, enhanced_state, metrics_data
else:
# No face detected
no_face_frame = frame.copy()
cv2.putText(no_face_frame, "No face detected", (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
return no_face_frame, None, "No face detected", metrics_data
def start_webcam_session(
ad_description: str = "",
ad_detail: str = "",
ad_type: str = "Video",
save_interval: int = 100, # Save CSV every N frames
record_video: bool = True
) -> Dict[str, Any]:
"""
Initialize a webcam session for facial analysis
Args:
ad_description: Description of the ad being watched
ad_detail: Detail focus of the ad
ad_type: Type of ad
save_interval: How often to save data to CSV
record_video: Whether to record processed frames for later saving
Returns:
Session context dictionary
"""
# Generate timestamp for file naming
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = CSV_FILENAME_TEMPLATE.format(timestamp=timestamp)
video_path = VIDEO_FILENAME_TEMPLATE.format(timestamp=timestamp) if record_video else None
# Setup ad context
gemini_result = call_gemini_api_for_ad(ad_description, ad_detail, ad_type)
ad_context = {
"ad_description": ad_description,
"ad_detail": ad_detail,
"ad_type": ad_type,
"gemini_ad_analysis": gemini_result
}
# Initialize session context
session = {
"start_time": time.time(),
"frame_count": 0,
"metrics_data": initial_metrics_df.copy(),
"ad_context": ad_context,
"csv_path": csv_path,
"video_path": video_path,
"save_interval": save_interval,
"last_saved": 0,
"record_video": record_video,
"recorded_frames": [] if record_video else None,
"timestamps": [] if record_video else None
}
return session
def update_webcam_session(
session: Dict[str, Any],
frame: np.ndarray
) -> Tuple[np.ndarray, Dict[str, float], str, Dict[str, Any]]:
"""
Update webcam session with a new frame
Args:
session: Session context dictionary
frame: New frame from webcam
Returns:
Tuple of (annotated_frame, metrics_dict, enhanced_state, updated_session)
"""
# Process the frame
annotated_frame, metrics, enhanced_state, updated_df = process_webcam_frame(
frame,
session["ad_context"],
session["metrics_data"],
session["frame_count"],
session["start_time"]
)
# Update session
session["frame_count"] += 1
session["metrics_data"] = updated_df
# Record frame if enabled
if session["record_video"] and annotated_frame is not None:
session["recorded_frames"].append(annotated_frame)
session["timestamps"].append(time.time() - session["start_time"])
# Save CSV periodically
if session["frame_count"] - session["last_saved"] >= session["save_interval"]:
if not updated_df.empty:
updated_df.to_csv(session["csv_path"], index=False)
session["last_saved"] = session["frame_count"]
return annotated_frame, metrics, enhanced_state, session
def end_webcam_session(session: Dict[str, Any]) -> Tuple[str, str]:
"""
End a webcam session and save final results
Args:
session: Session context dictionary
Returns:
Tuple of (csv_path, video_path)
"""
# Save final metrics to CSV
if not session["metrics_data"].empty:
session["metrics_data"].to_csv(session["csv_path"], index=False)
# Save recorded video if available
video_path = None
if session["record_video"] and session["recorded_frames"]:
try:
frames = session["recorded_frames"]
if frames:
# Get frame dimensions
height, width = frames[0].shape[:2]
# Calculate FPS based on actual timestamps
if len(session["timestamps"]) > 1:
# Calculate average time between frames
time_diffs = np.diff(session["timestamps"])
avg_frame_time = np.mean(time_diffs)
fps = 1.0 / avg_frame_time if avg_frame_time > 0 else 15.0
else:
fps = 15.0 # Default FPS
# Create video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_path = session["video_path"]
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
# Write frames
for frame in frames:
out.write(frame)
out.release()
print(f"Recorded video saved to {video_path}")
else:
print("No frames recorded")
except Exception as e:
print(f"Error saving video: {e}")
print(f"Session ended. Data saved to {session['csv_path']}")
return session["csv_path"], video_path
# --- Create Gradio Interface ---
def create_api_interface():
with gr.Blocks(title="Facial Analysis APIs") as iface:
gr.Markdown(f"""
# Enhanced Facial Analysis APIs (DeepFace)
This interface provides two API endpoints:
1. **Video File API**: Upload and analyze pre-recorded videos
2. **Webcam API**: Analyze live webcam feed in real-time
Both APIs use DeepFace for emotion analysis and Google's Gemini API for enhanced interpretations.
""")
with gr.Tab("Video File API"):
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video")
vid_ad_desc = gr.Textbox(label="Ad Description", placeholder="Enter a description of the advertisement being watched...")
vid_ad_detail = gr.Textbox(label="Ad Detail Focus", placeholder="Enter specific aspects to focus on...")
vid_ad_type = gr.Radio(
["Video", "Image", "Audio", "Text", "Funny", "Serious", "Action", "Informative"],
label="Ad Type/Genre",
value="Video"
)
sampling_rate = gr.Slider(
minimum=1, maximum=30, step=1, value=5,
label="Sampling Rate (process every N frames)"
)
save_video = gr.Checkbox(label="Save Processed Video", value=True)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Processing Results", lines=3)
with gr.Row():
with gr.Column():
output_video = gr.Video(label="Processed Video")
with gr.Column():
frame_gallery = gr.Gallery(label="Processed Frames",
show_label=True, columns=2,
height=400)
with gr.Row():
with gr.Column():
output_plot = gr.Plot(label="Sample Frame Metrics")
with gr.Column():
output_csv = gr.File(label="Download CSV Results")
# Define function to handle video processing and show frames
def handle_video_processing(video, desc, detail, ad_type, rate, save_vid):
if video is None:
return "No video uploaded", None, None, [], None
try:
result_text = "Starting video processing...\n"
# Process the video
csv_path, video_path, metrics_df, processed_frames = process_video_file(
video,
ad_description=desc,
ad_detail=detail,
ad_type=ad_type,
sampling_rate=rate,
save_processed_video=save_vid,
show_progress=True
)
if metrics_df is None or metrics_df.empty:
return "No facial data detected in video", None, None, [], None
# Generate a sample metrics visualization
sample_row = metrics_df.iloc[0].to_dict()
metrics_plot = update_metrics_visualization(sample_row)
# Create a gallery of processed frames
# Take a subset if there are too many frames (maximum ~20 for display)
display_frames = []
step = max(1, len(processed_frames) // 20)
for i in range(0, len(processed_frames), step):
if i < len(processed_frames):
# Convert BGR to RGB for display
rgb_frame = cv2.cvtColor(processed_frames[i], cv2.COLOR_BGR2RGB)
display_frames.append(rgb_frame)
# Return results summary
processed_count = metrics_df.shape[0]
total_count = len(processed_frames)
result_text = f"✅ Processed {processed_count} frames out of {total_count} total frames.\n"
result_text += f"📊 CSV saved with {len(metrics_df.columns)} metrics columns.\n"
if video_path:
result_text += f"🎬 Processed video saved to: {video_path}"
return result_text, video_path, metrics_plot, display_frames, csv_path
except Exception as e:
return f"❌ Error processing video: {str(e)}", None, None, [], None
process_btn.click(
handle_video_processing,
inputs=[video_input, vid_ad_desc, vid_ad_detail, vid_ad_type, sampling_rate, save_video],
outputs=[output_text, output_video, output_plot, frame_gallery, output_csv]
)
with gr.Tab("Webcam API"):
with gr.Row():
with gr.Column(scale=2):
webcam_input = gr.Image(sources="webcam", streaming=True, label="Webcam Input", type="numpy")
with gr.Row():
with gr.Column():
web_ad_desc = gr.Textbox(label="Ad Description", placeholder="Enter a description of the advertisement being watched...")
web_ad_detail = gr.Textbox(label="Ad Detail Focus", placeholder="Enter specific aspects to focus on...")
web_ad_type = gr.Radio(
["Video", "Image", "Audio", "Text", "Funny", "Serious", "Action", "Informative"],
label="Ad Type/Genre",
value="Video"
)
with gr.Column():
record_video_chk = gr.Checkbox(label="Record Video", value=True)
start_session_btn = gr.Button("Start Session", variant="primary")
end_session_btn = gr.Button("End Session", variant="stop")
session_status = gr.Textbox(label="Session Status", placeholder="Session not started...")
with gr.Column(scale=2):
processed_output = gr.Image(label="Processed Feed", type="numpy", height=360)
with gr.Row():
with gr.Column():
metrics_plot = gr.Plot(label="Current Metrics", height=300)
with gr.Column():
enhanced_state_txt = gr.Textbox(label="Enhanced State Analysis", lines=3)
with gr.Row():
download_csv = gr.File(label="Download Session Data")
download_video = gr.Video(label="Recorded Session")
# Session state
session_data = gr.State(value=None)
# Define session handlers
def start_session(desc, detail, ad_type, record_video):
session = start_webcam_session(
ad_description=desc,
ad_detail=detail,
ad_type=ad_type,
record_video=record_video
)
return (
session,
f"Session started at {datetime.datetime.now().strftime('%H:%M:%S')}.\n"
f"Ad context: {desc} ({ad_type}).\n"
f"Data will be saved to {session['csv_path']}"
)
def process_frame(frame, session):
if session is None:
return frame, None, "No active session. Click 'Start Session' to begin.", session
# Process the frame
annotated_frame, metrics, enhanced_state, updated_session = update_webcam_session(session, frame)
# Update the metrics plot if metrics available
if metrics:
metrics_plot = update_metrics_visualization(metrics)
return annotated_frame, metrics_plot, enhanced_state, updated_session
else:
# Return the annotated frame (likely with "No face detected")
return annotated_frame, None, enhanced_state or "No metrics available", updated_session
def end_session(session):
if session is None:
return "No active session", None, None
csv_path, video_path = end_webcam_session(session)
end_time = datetime.datetime.now().strftime('%H:%M:%S')
result = f"Session ended at {end_time}.\n"
if csv_path:
result += f"CSV data saved to: {csv_path}\n"
if video_path:
result += f"Video saved to: {video_path}"
return result, csv_path, video_path
start_session_btn.click(
start_session,
inputs=[web_ad_desc, web_ad_detail, web_ad_type, record_video_chk],
outputs=[session_data, session_status]
)
webcam_input.stream(
process_frame,
inputs=[webcam_input, session_data],
outputs=[processed_output, metrics_plot, enhanced_state_txt, session_data]
)
end_session_btn.click(
end_session,
inputs=[session_data],
outputs=[session_status, download_csv, download_video]
)
return iface
# Entry point
if __name__ == "__main__":
print("Starting Enhanced Facial Analysis API (DeepFace)...")
print(f"Gemini API {'enabled' if GEMINI_ENABLED else 'disabled (using simulation)'}")
iface = create_api_interface()
iface.launch(debug=True) |