File size: 13,783 Bytes
1cc356f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import zipfile
import torch
import clip
import numpy as np
from PIL import Image
import gradio as gr
import openai
from tqdm import tqdm
from glob import glob
import psycopg2
from psycopg2.extras import execute_values
import json
import time

# ─────────────────────────────────────────────
# πŸ“‚ STEP 1: UNZIP TO CORRECT STRUCTURE
# ─────────────────────────────────────────────
zip_name = "lfw-faces.zip"
unzip_dir = "lfw-faces"

if not os.path.exists(unzip_dir):
    print("πŸ”“ Unzipping...")
    with zipfile.ZipFile(zip_name, "r") as zip_ref:
        zip_ref.extractall(unzip_dir)
    print("βœ… Unzipped into:", unzip_dir)

# True image root after unzip
img_root = os.path.join(unzip_dir, "lfw-deepfunneled")

# ─────────────────────────────────────────────
# πŸ—„οΈ STEP 2: DATABASE SETUP
# ─────────────────────────────────────────────
def setup_database():
    """Setup PostgreSQL with pgvector extension"""
    # Database configuration
    DB_CONFIG = {
        "dbname": "face_matcher",
        "user": "postgres",
        "password": "postgres",  # Change this to your actual password
        "host": "localhost",
        "port": "5432"
    }
    
    try:
        # Connect to PostgreSQL server to create database if it doesn't exist
        conn = psycopg2.connect(
            dbname="postgres", 
            user=DB_CONFIG["user"], 
            password=DB_CONFIG["password"], 
            host=DB_CONFIG["host"]
        )
        conn.autocommit = True
        cur = conn.cursor()
        
        # Create database if it doesn't exist
        cur.execute(f"SELECT 1 FROM pg_catalog.pg_database WHERE datname = '{DB_CONFIG['dbname']}'")
        exists = cur.fetchone()
        if not exists:
            cur.execute(f"CREATE DATABASE {DB_CONFIG['dbname']}")
            print(f"Database {DB_CONFIG['dbname']} created.")
        
        cur.close()
        conn.close()
        
        # Connect to the face_matcher database
        conn = psycopg2.connect(**DB_CONFIG)
        conn.autocommit = True
        cur = conn.cursor()
        
        # Create pgvector extension if it doesn't exist
        cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
        
        # Create faces table if it doesn't exist
        cur.execute("""
            CREATE TABLE IF NOT EXISTS faces (
                id SERIAL PRIMARY KEY,
                path TEXT UNIQUE NOT NULL,
                name TEXT NOT NULL,
                embedding vector(512),
                created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        """)
        
        # Create index on the embedding column
        cur.execute("CREATE INDEX IF NOT EXISTS faces_embedding_idx ON faces USING ivfflat (embedding vector_ip_ops)")
        
        print("βœ… Database setup complete.")
        return conn
    except Exception as e:
        print(f"❌ Database setup failed: {e}")
        return None

# ─────────────────────────────────────────────
# 🧠 STEP 3: LOAD CLIP MODEL
# ─────────────────────────────────────────────
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
print(f"βœ… CLIP model loaded on {device}")

# ─────────────────────────────────────────────
# πŸ“Š STEP 4: EMBEDDING FUNCTIONS
# ─────────────────────────────────────────────
def embed_image(image_path):
    """Generate CLIP embedding for a single image"""
    try:
        img = Image.open(image_path).convert("RGB")
        img_input = preprocess(img).unsqueeze(0).to(device)
        with torch.no_grad():
            emb = model.encode_image(img_input).cpu().numpy().flatten()
            emb /= np.linalg.norm(emb)
        return emb
    except Exception as e:
        print(f"⚠️ Error embedding {image_path}: {e}")
        return None

def populate_database(conn, limit=500):
    """Populate database with images and their embeddings"""
    # Collect all .jpg files inside subfolders
    all_images = sorted(glob(os.path.join(img_root, "*", "*.jpg")))
    selected_images = all_images[:limit]
    
    if len(selected_images) == 0:
        raise RuntimeError("❌ No image files found in unzipped structure!")
    
    cur = conn.cursor()
    
    # Check which images are already in the database
    cur.execute("SELECT path FROM faces")
    existing_paths = set(path[0] for path in cur.fetchall())
    
    # Filter out images that are already in the database
    new_images = [path for path in selected_images if path not in existing_paths]
    
    if not new_images:
        print("βœ… All images are already in the database.")
        return
    
    print(f"🧠 Generating CLIP embeddings for {len(new_images)} new images...")
    
    # Process images in batches to avoid memory issues
    batch_size = 50
    for i in range(0, len(new_images), batch_size):
        batch = new_images[i:i+batch_size]
        data_to_insert = []
        
        for fpath in tqdm(batch, desc=f"Embedding batch {i//batch_size + 1}"):
            try:
                emb = embed_image(fpath)
                if emb is not None:
                    name = os.path.splitext(os.path.basename(fpath))[0].replace("_", " ")
                    data_to_insert.append((fpath, name, emb.tolist()))
            except Exception as e:
                print(f"⚠️ Error with {fpath}: {e}")
        
        # Insert batch into database
        if data_to_insert:
            execute_values(
                cur,
                "INSERT INTO faces (path, name, embedding) VALUES %s ON CONFLICT (path) DO NOTHING",
                [(d[0], d[1], d[2]) for d in data_to_insert],
                template="(%s, %s, %s::vector)"
            )
            conn.commit()
    
    # Count total faces in database
    cur.execute("SELECT COUNT(*) FROM faces")
    total_faces = cur.fetchone()[0]
    print(f"βœ… Database now contains {total_faces} faces.")

# ─────────────────────────────────────────────
# πŸ” STEP 5: LOAD OPENAI API KEY
# ─────────────────────────────────────────────
openai.api_key = os.getenv("OPENAI_API_KEY")

# ─────────────────────────────────────────────
# πŸ” STEP 6: FACE MATCHING FUNCTION
# ─────────────────────────────────────────────
def scan_face(user_image, conn):
    """Scan a face image and find matches in the database"""
    if user_image is None:
        return [], "", "", "Please upload a face image."

    try:
        user_image = user_image.convert("RGB")
        tensor = preprocess(user_image).unsqueeze(0).to(device)
        with torch.no_grad():
            query_emb = model.encode_image(tensor).cpu().numpy().flatten()
            query_emb /= np.linalg.norm(query_emb)
    except Exception as e:
        return [], "", "", f"Image preprocessing failed: {e}"

    # Query database for similar faces
    cur = conn.cursor()
    emb_list = query_emb.tolist()
    cur.execute("""
        SELECT path, name, embedding <-> %s::vector AS distance
        FROM faces
        ORDER BY distance
        LIMIT 5
    """, (emb_list,))
    
    results = cur.fetchall()
    
    gallery, captions, names = [], [], []
    scores = []
    
    for path, name, distance in results:
        try:
            # Convert distance to similarity score (1 - distance)
            similarity = 1 - distance
            scores.append(similarity)
            
            img = Image.open(path)
            gallery.append(img)
            captions.append(f"{name} (Score: {similarity:.2f})")
            names.append(name)
        except Exception as e:
            captions.append(f"⚠️ Error loading match image: {e}")
    
    risk_score = min(100, int(np.mean(scores) * 100)) if scores else 0

    # 🧠 GPT-4 EXPLANATION
    try:
        prompt = (
            f"The uploaded face matches closely with: {', '.join(names)}. "
            f"Based on this, should the user be suspicious? Analyze like a funny but smart AI dating detective."
        )
        response = openai.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You're a playful but intelligent AI face-matching analyst."},
                {"role": "user", "content": prompt}
            ]
        )
        explanation = response.choices[0].message.content
    except Exception as e:
        explanation = f"(OpenAI error): {e}"

    return gallery, "\n".join(captions), f"{risk_score}/100", explanation

# ─────────────────────────────────────────────
# 🌱 STEP 7: ADD NEW FACE FUNCTION
# ─────────────────────────────────────────────
def add_new_face(image, name, conn):
    """Add a new face to the database"""
    if image is None or not name:
        return "Please provide both an image and a name."
    
    try:
        # Save image to a temporary file
        timestamp = int(time.time())
        os.makedirs("uploaded_faces", exist_ok=True)
        path = f"uploaded_faces/{name.replace(' ', '_')}_{timestamp}.jpg"
        image.save(path)
        
        # Generate embedding
        emb = embed_image(path)
        if emb is None:
            return "Failed to generate embedding for the image."
        
        # Add to database
        cur = conn.cursor()
        cur.execute(
            "INSERT INTO faces (path, name, embedding) VALUES (%s, %s, %s::vector)",
            (path, name, emb.tolist())
        )
        conn.commit()
        
        return f"βœ… Added {name} to the database successfully!"
    except Exception as e:
        return f"❌ Failed to add face: {e}"

# ─────────────────────────────────────────────
# πŸŽ›οΈ STEP 8: GRADIO UI
# ─────────────────────────────────────────────
def create_ui():
    """Create Gradio UI with both scan and add functionality"""
    # Setup database connection
    conn = setup_database()
    if conn is None:
        raise RuntimeError("❌ Database connection failed. Please check your PostgreSQL installation and pgvector extension.")
    
    # Populate database with initial images
    populate_database(conn)
    
    # Wrapper functions for Gradio that use the database connection
    def scan_face_wrapper(image):
        return scan_face(image, conn)
    
    def add_face_wrapper(image, name):
        return add_new_face(image, name, conn)
    
    with gr.Blocks(title="Tinder Scanner – Real Face Match Detector") as demo:
        gr.Markdown("# Tinder Scanner – Real Face Match Detector")
        gr.Markdown("Scan a face image to find visual matches using CLIP and PostgreSQL, and get a cheeky GPT-4 analysis.")
        
        with gr.Tab("Scan Face"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type="pil", label="Upload a Face Image")
                    scan_button = gr.Button("πŸ” Scan Face")
                
                with gr.Column():
                    gallery = gr.Gallery(label="πŸ” Top Matches", columns=[5], height="auto")
                    captions = gr.Textbox(label="Match Names + Similarity Scores")
                    risk_score = gr.Textbox(label="🚨 Cheating Risk Score")
                    explanation = gr.Textbox(label="🧠 GPT-4 Explanation", lines=5)
            
            scan_button.click(
                fn=scan_face_wrapper,
                inputs=[input_image],
                outputs=[gallery, captions, risk_score, explanation]
            )
        
        with gr.Tab("Add New Face"):
            with gr.Row():
                with gr.Column():
                    new_image = gr.Image(type="pil", label="Upload New Face Image")
                    new_name = gr.Textbox(label="Person's Name")
                    add_button = gr.Button("βž• Add to Database")
                
                with gr.Column():
                    result = gr.Textbox(label="Result")
            
            add_button.click(
                fn=add_face_wrapper,
                inputs=[new_image, new_name],
                outputs=result
            )
    
    return demo

# ─────────────────────────────────────────────
# πŸš€ MAIN EXECUTION
# ─────────────────────────────────────────────
if __name__ == "__main__":
    demo = create_ui()
    demo.launch()