File size: 13,765 Bytes
1cc356f
2680fbd
1cc356f
 
2680fbd
1cc356f
 
 
 
2680fbd
1cc356f
2680fbd
1cc356f
 
2680fbd
1cc356f
2680fbd
 
1cc356f
 
2680fbd
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc356f
 
2680fbd
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe5531
2680fbd
dfe5531
2680fbd
 
 
 
dfe5531
2680fbd
 
 
dfe5531
2680fbd
 
 
 
 
 
dfe5531
2680fbd
dfe5531
2680fbd
 
 
 
 
 
 
 
 
 
 
dfe5531
2680fbd
dfe5531
2680fbd
 
 
 
 
 
 
 
 
 
dfe5531
2680fbd
 
 
 
 
 
 
dfe5531
2680fbd
 
 
 
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc356f
dfe5531
2680fbd
 
 
 
 
dfe5531
2680fbd
dfe5531
2680fbd
 
1cc356f
2680fbd
 
1cc356f
2680fbd
 
 
1cc356f
dfe5531
2680fbd
 
 
 
 
 
 
 
 
 
 
dfe5531
2680fbd
1cc356f
2680fbd
 
 
1cc356f
 
2680fbd
1cc356f
2680fbd
 
 
 
 
 
 
 
1cc356f
2680fbd
dfe5531
2680fbd
 
 
 
 
dfe5531
2680fbd
 
 
 
 
 
 
dfe5531
2680fbd
1cc356f
2680fbd
1cc356f
 
2680fbd
1cc356f
2680fbd
 
 
 
 
 
 
 
 
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc356f
2680fbd
 
 
 
 
1cc356f
 
2680fbd
 
 
 
 
 
 
 
 
 
1cc356f
 
2680fbd
1cc356f
 
2680fbd
1cc356f
2680fbd
 
 
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
1cc356f
2680fbd
 
 
 
 
1cc356f
2680fbd
 
 
 
 
 
 
 
 
 
 
1cc356f
2680fbd
 
 
 
 
1cc356f
 
 
 
2680fbd
1cc356f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import json
import torch
import clip
import faiss
import numpy as np
from PIL import Image
import gradio as gr
import openai
import requests
from tqdm import tqdm
from io import BytesIO

# ─────────────────────────────────────────────
# 🧠 STEP 1: LOAD CLIP MODEL
# ─────────────────────────────────────────────
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

# ─────────────────────────────────────────────
# πŸ“¦ STEP 2: LOAD PROFILE DATA FROM JSON
# ─────────────────────────────────────────────
def load_profile_data(json_file_path=None, json_data=None):
    """Load profile data either from a file or directly from JSON data"""
    if json_file_path and os.path.exists(json_file_path):
        with open(json_file_path, 'r') as f:
            profiles = json.load(f)
    elif json_data:
        profiles = json_data
    else:
        # Sample data structure as fallback
        profiles = [
            {
                "Id": "sample-id",
                "Name": "Sample Profile",
                "Age": 25,
                "Bio": "Sample bio",
                "Photos": [
                    "https://example.com/sample.jpg"
                ]
            }
        ]
    
    return profiles

# ─────────────────────────────────────────────
# πŸ–ΌοΈ STEP 3: DOWNLOAD AND PROCESS IMAGES
# ─────────────────────────────────────────────
def download_and_process_image(url):
    """Download image from URL and return PIL Image"""
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        img = Image.open(BytesIO(response.content)).convert("RGB")
        return img
    except Exception as e:
        print(f"⚠️ Error downloading image from {url}: {e}")
        return None

def generate_embeddings(profiles, max_images=500):
    """Generate CLIP embeddings for profile images"""
    embeddings = []
    image_urls = []
    profile_info = []  # Store name, age, etc. for each image
    
    image_count = 0
    
    print(f"🧠 Generating CLIP embeddings for profile images...")
    for profile in tqdm(profiles, desc="Processing profiles"):
        name = profile.get("Name", "Unknown")
        age = profile.get("Age", "?")
        
        for photo_url in profile.get("Photos", []):
            if image_count >= max_images:
                break
                
            try:
                img = download_and_process_image(photo_url)
                if img is None:
                    continue
                    
                img_input = preprocess(img).unsqueeze(0).to(device)
                with torch.no_grad():
                    emb = model.encode_image(img_input).cpu().numpy().flatten()
                    emb /= np.linalg.norm(emb)
                
                embeddings.append(emb)
                image_urls.append(photo_url)
                profile_info.append({
                    "Name": name,
                    "Age": age,
                    "Id": profile.get("Id", "Unknown"),
                    "Bio": profile.get("Bio", "")
                })
                
                image_count += 1
            except Exception as e:
                print(f"⚠️ Error with {photo_url}: {e}")
        
        if image_count >= max_images:
            break
    
    if embeddings:
        embeddings = np.vstack(embeddings).astype("float32")
    else:
        embeddings = np.array([]).astype("float32")
    
    print(f"βœ… Finished embedding {len(embeddings)} images.")
    return embeddings, image_urls, profile_info

# ─────────────────────────────────────────────
# ⚑ STEP 4: BUILD FAISS INDEX
# ─────────────────────────────────────────────
def build_faiss_index(embeddings):
    """Build FAISS index from embeddings"""
    if len(embeddings) == 0:
        return None
        
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatIP(dimension)
    index.add(embeddings)
    return index

# ─────────────────────────────────────────────
# πŸ” STEP 5: LOAD OPENAI API KEY
# ─────────────────────────────────────────────
def init_openai():
    openai.api_key = os.getenv("OPENAI_API_KEY")
    if not openai.api_key:
        print("⚠️ Warning: OPENAI_API_KEY not found. GPT-4 analysis will not be available.")

# ─────────────────────────────────────────────
# πŸ”Ž STEP 6: SEARCH FUNCTIONALITY
# ─────────────────────────────────────────────
def search_similar_faces(user_image, index, image_urls, profile_info, top_k=5):
    """Search for similar faces using CLIP + FAISS"""
    if index is None:
        return [], [], 0, "No index available. Please load profile data first."
    
    try:
        user_image = user_image.convert("RGB")
        tensor = preprocess(user_image).unsqueeze(0).to(device)
        with torch.no_grad():
            query_emb = model.encode_image(tensor).cpu().numpy().astype("float32")
            query_emb /= np.linalg.norm(query_emb)
    except Exception as e:
        return [], [], 0, f"Image preprocessing failed: {e}"
    
    scores, indices = index.search(query_emb, top_k)
    scores, indices = scores.flatten(), indices.flatten()
    
    matching_images = []
    match_details = []
    
    for i in range(len(indices)):
        idx = indices[i]
        score = scores[i]
        
        try:
            url = image_urls[idx]
            info = profile_info[idx]
            
            img = download_and_process_image(url)
            if img:
                matching_images.append(img)
                match_details.append({
                    "url": url,
                    "score": score,
                    "info": info
                })
        except Exception as e:
            print(f"⚠️ Error processing match at index {idx}: {e}")
    
    risk_score = min(100, int(np.mean(scores) * 100)) if scores.size > 0 else 0
    
    return matching_images, match_details, risk_score

# ─────────────────────────────────────────────
# 🧠 STEP 7: GPT-4 ANALYSIS
# ─────────────────────────────────────────────
def generate_gpt4_analysis(match_details):
    """Generate fun analysis using GPT-4"""
    if not openai.api_key:
        return "GPT-4 analysis not available (API key not configured)"
    
    if not match_details:
        return "No matches found for analysis"
    
    try:
        names = [f"{d['info']['Name']} ({d['info']['Age']})" for d in match_details]
        
        prompt = (
            f"The uploaded face matches closely with: {', '.join(names)}. "
            f"Based on this, should the user be suspicious? "
            f"Analyze like a funny but smart AI dating detective. Keep it concise."
        )
        
        response = openai.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You're a playful but intelligent AI face-matching analyst."},
                {"role": "user", "content": prompt}
            ]
        )
        
        return response.choices[0].message.content
    except Exception as e:
        return f"(OpenAI error): {e}"

# ─────────────────────────────────────────────
# πŸŽ›οΈ STEP 8: APPLICATION CLASS
# ─────────────────────────────────────────────
class TinderScanner:
    def __init__(self):
        self.index = None
        self.image_urls = []
        self.profile_info = []
        self.profiles = []
        
        # Initialize OpenAI
        init_openai()
    
    def load_data(self, json_text=None, json_file=None):
        """Load profile data and build index"""
        try:
            if json_text:
                json_data = json.loads(json_text)
                self.profiles = load_profile_data(json_data=json_data)
            elif json_file:
                self.profiles = load_profile_data(json_file_path=json_file)
            else:
                return "Please provide either JSON text or a JSON file"
            
            embeddings, self.image_urls, self.profile_info = generate_embeddings(self.profiles)
            
            if len(embeddings) > 0:
                self.index = build_faiss_index(embeddings)
                return f"βœ… Successfully loaded {len(self.profiles)} profiles with {len(self.image_urls)} photos"
            else:
                return "⚠️ No valid images found in the provided data"
        except Exception as e:
            return f"❌ Error loading data: {e}"
    
    def scan_face(self, user_image, json_input=None):
        """Process a user image and find matches"""
        # Load data if provided and not already loaded
        if json_input and not self.index:
            load_result = self.load_data(json_text=json_input)
            if "Successfully" not in load_result:
                return [], "", "", load_result
        
        if not self.index:
            return [], "", "", "Please load profile data first by providing JSON input"
        
        if user_image is None:
            return [], "", "", "Please upload a face image"
        
        images, match_details, risk_score = search_similar_faces(
            user_image, self.index, self.image_urls, self.profile_info
        )
        
        # Format match captions
        captions = []
        for detail in match_details:
            info = detail["info"]
            captions.append(f"{info['Name']} ({info['Age']}) - Score: {detail['score']:.2f}")
        
        # Generate GPT-4 analysis
        explanation = generate_gpt4_analysis(match_details)
        
        return images, "\n".join(captions), f"{risk_score}/100", explanation

# ─────────────────────────────────────────────
# πŸ–₯️ STEP 9: GRADIO UI
# ─────────────────────────────────────────────
def create_ui():
    scanner = TinderScanner()
    
    with gr.Blocks(title="Enhanced Tinder Scanner") as demo:
        gr.Markdown("# πŸ” Tinder Scanner Pro – Face Match Detector")
        gr.Markdown("Scan a face image to find visual matches in Tinder profiles and get a cheeky GPT-4 analysis.")
        
        with gr.Tabs():
            with gr.TabItem("Setup Data"):
                with gr.Row():
                    with gr.Column():
                        json_input = gr.Textbox(
                            label="JSON Profile Data",
                            placeholder='Paste JSON data here. Format: [{"Id": "...", "Name": "...", "Age": 25, "Photos": ["url1", "url2"]}]',
                            lines=10
                        )
                        load_btn = gr.Button("Load Profile Data", variant="primary")
                        data_status = gr.Textbox(label="Status")
                
                load_btn.click(
                    fn=scanner.load_data,
                    inputs=[json_input],
                    outputs=[data_status]
                )
            
            with gr.TabItem("Scan Face"):
                with gr.Row():
                    with gr.Column():
                        user_image = gr.Image(type="pil", label="Upload a Face Image")
                        scan_btn = gr.Button("Scan Face", variant="primary")
                    
                    with gr.Column():
                        matches_gallery = gr.Gallery(label="πŸ” Top Matches", columns=[5], height="auto")
                        match_details = gr.Textbox(label="Match Details")
                        risk_score = gr.Textbox(label="🚨 Similarity Score")
                        gpt_analysis = gr.Textbox(label="🧠 GPT-4 Analysis")
                
                scan_btn.click(
                    fn=scanner.scan_face,
                    inputs=[user_image, json_input],
                    outputs=[matches_gallery, match_details, risk_score, gpt_analysis]
                )
    
    return demo

# ─────────────────────────────────────────────
# πŸš€ STEP 10: MAIN EXECUTION
# ─────────────────────────────────────────────
if __name__ == "__main__":
    demo = create_ui()
    demo.launch()