Spaces:
Running
Running
File size: 21,123 Bytes
1cc356f 2680fbd 1cc356f 2680fbd 1cc356f 2680fbd 69c8245 1cc356f 2680fbd 69c8245 1cc356f 2680fbd 1cc356f 2680fbd 1cc356f 69c8245 1cc356f 2680fbd 69c8245 2680fbd 1cc356f 69c8245 1cc356f 69c8245 1cc356f 2680fbd 69c8245 dfe5531 69c8245 dfe5531 69c8245 dfe5531 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 dfe5531 2680fbd 69c8245 2680fbd dfe5531 2680fbd 1cc356f 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 1cc356f dfe5531 2680fbd dfe5531 2680fbd dfe5531 69c8245 2680fbd 1cc356f 2680fbd 1cc356f 2680fbd 1cc356f 69c8245 dfe5531 2680fbd dfe5531 2680fbd 1cc356f 69c8245 2680fbd 1cc356f 69c8245 1cc356f 2680fbd 69c8245 2680fbd 1cc356f 2680fbd 69c8245 dfe5531 2680fbd 69c8245 2680fbd dfe5531 2680fbd dfe5531 2680fbd 1cc356f 2680fbd 1cc356f 69c8245 1cc356f 2680fbd 69c8245 2680fbd 1cc356f 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 2680fbd 69c8245 1cc356f 2680fbd 69c8245 1cc356f 69c8245 2680fbd 1cc356f 69c8245 1cc356f 2680fbd 1cc356f 69c8245 1cc356f 2680fbd 69c8245 2680fbd 69c8245 2680fbd 1cc356f 69c8245 2680fbd 1cc356f 2680fbd 8b89e67 2680fbd 69c8245 2680fbd 1cc356f 2680fbd 69c8245 2680fbd 1cc356f 69c8245 1cc356f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import os
import json
import torch
import clip
import faiss
import numpy as np
from PIL import Image
import gradio as gr
import openai
import requests
import sqlite3
from tqdm import tqdm
from io import BytesIO
from datetime import datetime
from pathlib import Path
# βββββββββββββββββββββββββββββββββββββββββββββ
# π§ STEP 1: LOAD CLIP MODEL
# βββββββββββββββββββββββββββββββββββββββββββββ
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
# βββββββββββββββββββββββββββββββββββββββββββββ
# π STEP 2: PATH CONFIGURATION
# βββββββββββββββββββββββββββββββββββββββββββββ
# Default paths for Hugging Face Spaces
HF_SPACE_PATH = os.getenv("HF_SPACE_PATH", ".")
DEFAULT_JSON_PATH = os.path.join(HF_SPACE_PATH, "profiles.json")
DEFAULT_DB_PATH = os.path.join(HF_SPACE_PATH, "tinder_profiles.db")
# βββββββββββββββββββββββββββββββββββββββββββββ
# ποΈ STEP 3: DATABASE SETUP
# βββββββββββββββββββββββββββββββββββββββββββββ
def setup_database(db_path=DEFAULT_DB_PATH):
"""Initialize SQLite database with required tables"""
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
# Create tables if they don't exist
cursor.execute('''
CREATE TABLE IF NOT EXISTS profiles (
id TEXT PRIMARY KEY,
name TEXT,
age INTEGER,
bio TEXT,
added_date TEXT
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS photos (
photo_id INTEGER PRIMARY KEY AUTOINCREMENT,
profile_id TEXT,
url TEXT UNIQUE,
embedding BLOB,
FOREIGN KEY (profile_id) REFERENCES profiles(id)
)
''')
conn.commit()
conn.close()
print(f"β
Database initialized at {db_path}")
return db_path
# βββββββββββββββββββββββββββββββββββββββββββββ
# π¦ STEP 4: PROFILE DATA MANAGEMENT
# βββββββββββββββββββββββββββββββββββββββββββββ
def load_profile_data(json_file_path=None, json_data=None):
"""Load profile data either from a file or directly from JSON data"""
if json_file_path and os.path.exists(json_file_path):
with open(json_file_path, 'r') as f:
profiles = json.load(f)
elif json_data:
profiles = json_data
else:
# Default to profiles.json in the Hugging Face space
if os.path.exists(DEFAULT_JSON_PATH):
with open(DEFAULT_JSON_PATH, 'r') as f:
profiles = json.load(f)
else:
# Sample data structure as fallback
profiles = [
{
"Id": "sample-id",
"Name": "Sample Profile",
"Age": 25,
"Bio": "Sample bio",
"Photos": [
"https://example.com/sample.jpg"
]
}
]
return profiles
def store_profiles_in_db(profiles, db_path=DEFAULT_DB_PATH):
"""Store profiles in the SQLite database"""
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
today = datetime.now().strftime("%Y-%m-%d")
new_profiles = 0
new_photos = 0
for profile in tqdm(profiles, desc="Storing profiles"):
profile_id = profile.get("Id", str(hash(profile.get("Name", "") + str(profile.get("Age", 0)))))
name = profile.get("Name", "Unknown")
age = profile.get("Age", 0)
bio = profile.get("Bio", "")
# Check if profile exists
cursor.execute("SELECT id FROM profiles WHERE id=?", (profile_id,))
exists = cursor.fetchone()
if not exists:
cursor.execute(
"INSERT INTO profiles (id, name, age, bio, added_date) VALUES (?, ?, ?, ?, ?)",
(profile_id, name, age, bio, today)
)
new_profiles += 1
# Add photos
for photo_url in profile.get("Photos", []):
cursor.execute("SELECT photo_id FROM photos WHERE url=?", (photo_url,))
photo_exists = cursor.fetchone()
if not photo_exists:
cursor.execute(
"INSERT INTO photos (profile_id, url, embedding) VALUES (?, ?, NULL)",
(profile_id, photo_url)
)
new_photos += 1
conn.commit()
conn.close()
return new_profiles, new_photos
# βββββββββββββββββββββββββββββββββββββββββββββ
# πΌοΈ STEP 5: IMAGE PROCESSING & EMBEDDINGS
# βββββββββββββββββββββββββββββββββββββββββββββ
def download_and_process_image(url):
"""Download image from URL and return PIL Image"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert("RGB")
return img
except Exception as e:
print(f"β οΈ Error downloading image from {url}: {e}")
return None
def generate_and_store_embeddings(db_path=DEFAULT_DB_PATH, max_images=1000):
"""Generate CLIP embeddings for profile images and store in database"""
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
# Get photos without embeddings
cursor.execute("""
SELECT p.photo_id, p.url, pr.id, pr.name, pr.age, pr.bio
FROM photos p
JOIN profiles pr ON p.profile_id = pr.id
WHERE p.embedding IS NULL
LIMIT ?
""", (max_images,))
photos = cursor.fetchall()
processed = 0
errors = 0
print(f"π§ Generating CLIP embeddings for {len(photos)} new images...")
for photo in tqdm(photos, desc="Processing images"):
photo_id, url, profile_id, name, age, bio = photo
try:
img = download_and_process_image(url)
if img is None:
errors += 1
continue
img_input = preprocess(img).unsqueeze(0).to(device)
with torch.no_grad():
emb = model.encode_image(img_input).cpu().numpy().flatten()
emb /= np.linalg.norm(emb) # Normalize
# Store the embedding as a binary blob
cursor.execute(
"UPDATE photos SET embedding = ? WHERE photo_id = ?",
(emb.tobytes(), photo_id)
)
processed += 1
# Commit every 10 images to avoid losing work
if processed % 10 == 0:
conn.commit()
except Exception as e:
print(f"β οΈ Error with {url}: {e}")
errors += 1
conn.commit()
conn.close()
print(f"β
Finished embedding {processed} images with {errors} errors.")
return processed, errors
def load_embeddings_from_db(db_path=DEFAULT_DB_PATH):
"""Load all embeddings, urls and profile info from the database"""
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute("""
SELECT p.embedding, p.url, pr.id, pr.name, pr.age, pr.bio
FROM photos p
JOIN profiles pr ON p.profile_id = pr.id
WHERE p.embedding IS NOT NULL
""")
result = cursor.fetchall()
conn.close()
embeddings = []
image_urls = []
profile_info = []
for row in result:
embedding_bytes, url, profile_id, name, age, bio = row
if embedding_bytes: # Ensure we have embedding data
# Convert bytes back to numpy array
emb = np.frombuffer(embedding_bytes, dtype=np.float32)
embeddings.append(emb)
image_urls.append(url)
profile_info.append({
"Id": profile_id,
"Name": name,
"Age": age,
"Bio": bio
})
if embeddings:
embeddings_array = np.vstack(embeddings).astype("float32")
else:
embeddings_array = np.array([]).astype("float32")
print(f"π Loaded {len(embeddings_array)} embeddings from database")
return embeddings_array, image_urls, profile_info
# βββββββββββββββββββββββββββββββββββββββββββββ
# β‘ STEP 6: BUILD FAISS INDEX
# βββββββββββββββββββββββββββββββββββββββββββββ
def build_faiss_index(embeddings):
"""Build FAISS index from embeddings"""
if len(embeddings) == 0:
return None
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings)
return index
# βββββββββββββββββββββββββββββββββββββββββββββ
# π STEP 7: OPENAI API SETUP
# βββββββββββββββββββββββββββββββββββββββββββββ
def init_openai():
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
print("β οΈ Warning: OPENAI_API_KEY not found. GPT-4 analysis will not be available.")
# βββββββββββββββββββββββββββββββββββββββββββββ
# π STEP 8: SEARCH FUNCTIONALITY
# βββββββββββββββββββββββββββββββββββββββββββββ
def search_similar_faces(user_image, index, image_urls, profile_info, top_k=20, min_score=0.80):
"""Search for similar faces using CLIP + FAISS with minimum score threshold"""
if index is None:
return [], [], 0, "No index available. Please load profile data first."
try:
user_image = user_image.convert("RGB")
tensor = preprocess(user_image).unsqueeze(0).to(device)
with torch.no_grad():
query_emb = model.encode_image(tensor).cpu().numpy().astype("float32")
query_emb /= np.linalg.norm(query_emb)
except Exception as e:
return [], [], 0, f"Image preprocessing failed: {e}"
# Search for more matches than we need (we'll filter by score)
scores, indices = index.search(query_emb, top_k)
scores, indices = scores.flatten(), indices.flatten()
matching_images = []
match_details = []
for i in range(len(indices)):
idx = indices[i]
score = scores[i]
# Only include matches with score >= min_score (0.80)
if score < min_score:
continue
try:
url = image_urls[idx]
info = profile_info[idx]
img = download_and_process_image(url)
if img:
matching_images.append(img)
match_details.append({
"url": url,
"score": score,
"info": info
})
except Exception as e:
print(f"β οΈ Error processing match at index {idx}: {e}")
# Calculate risk score based on high-quality matches only
match_scores = [d["score"] for d in match_details]
risk_score = min(100, int(np.mean(match_scores) * 100)) if match_scores else 0
return matching_images, match_details, risk_score
# βββββββββββββββββββββββββββββββββββββββββββββ
# π§ STEP 9: GPT-4 ANALYSIS
# βββββββββββββββββββββββββββββββββββββββββββββ
def generate_gpt4_analysis(match_details):
"""Generate fun analysis using GPT-4"""
if not openai.api_key:
return "GPT-4 analysis not available (API key not configured)"
if not match_details:
return "No high-similarity matches found for analysis"
try:
names = [f"{d['info']['Name']} ({d['info']['Age']})" for d in match_details]
scores = [f"{d['score']:.2f}" for d in match_details]
prompt = (
f"The uploaded face matches closely with: {', '.join(names)} with similarity scores: {', '.join(scores)}. "
f"These are very high similarity matches (0.80-1.00 range). "
f"Based on this, should the user be suspicious? "
f"Analyze like a funny but smart AI dating detective. Keep it concise."
)
response = openai.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You're a playful but intelligent AI face-matching analyst."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as e:
return f"(OpenAI error): {e}"
# βββββββββββββββββββββββββββββββββββββββββββββ
# ποΈ STEP 10: APPLICATION CLASS
# βββββββββββββββββββββββββββββββββββββββββββββ
class TinderScanner:
def __init__(self):
self.index = None
self.image_urls = []
self.profile_info = []
self.profiles = []
self.db_path = None
# Setup database
self.db_path = setup_database()
# Initialize OpenAI
init_openai()
def init_from_database(self):
"""Initialize scanner from database content"""
try:
# Load embeddings from database
embeddings, self.image_urls, self.profile_info = load_embeddings_from_db(self.db_path)
if len(embeddings) > 0:
self.index = build_faiss_index(embeddings)
return f"β
Successfully loaded {len(self.image_urls)} photos from database"
else:
return "β οΈ No embeddings found in database. Upload profile data first."
except Exception as e:
return f"β Error loading from database: {e}"
def load_data(self, json_text=None, json_file=None):
"""Load profile data and build index"""
try:
# Load profiles from JSON
if json_text:
json_data = json.loads(json_text)
self.profiles = load_profile_data(json_data=json_data)
elif json_file:
self.profiles = load_profile_data(json_file_path=json_file)
else:
# Try to load from default location
self.profiles = load_profile_data(json_file_path=DEFAULT_JSON_PATH)
if not self.profiles:
return "β οΈ No profile data found"
# Store profiles in database
new_profiles, new_photos = store_profiles_in_db(self.profiles, self.db_path)
# Generate embeddings for new photos
processed, errors = generate_and_store_embeddings(self.db_path)
# Load all embeddings (including newly processed ones)
embeddings, self.image_urls, self.profile_info = load_embeddings_from_db(self.db_path)
if len(embeddings) > 0:
self.index = build_faiss_index(embeddings)
return (f"β
Database updated: {new_profiles} new profiles, {new_photos} new photos, "
f"{processed} photos processed. Total: {len(self.image_urls)} photos indexed.")
else:
return "β οΈ No valid images found in the provided data"
except Exception as e:
return f"β Error loading data: {e}"
def scan_face(self, user_image, min_score=0.80):
"""Process a user image and find matches with minimum score"""
# Try to initialize from database if not already
if not self.index:
init_result = self.init_from_database()
if "Successfully" not in init_result:
return [], "", "", "Please load profile data first by providing JSON input"
if user_image is None:
return [], "", "", "Please upload a face image"
images, match_details, risk_score = search_similar_faces(
user_image, self.index, self.image_urls, self.profile_info,
min_score=min_score
)
if not match_details:
return [], "", "0/100", "No matches with similarity score β₯ 0.80 found"
# Format match captions
captions = []
for detail in match_details:
info = detail["info"]
captions.append(f"{info['Name']} ({info['Age']}) - Score: {detail['score']:.2f}")
# Generate GPT-4 analysis
explanation = generate_gpt4_analysis(match_details)
return images, "\n".join(captions), f"{risk_score}/100", explanation
# βββββββββββββββββββββββββββββββββββββββββββββ
# π₯οΈ STEP 11: GRADIO UI
# βββββββββββββββββββββββββββββββββββββββββββββ
def create_ui():
scanner = TinderScanner()
with gr.Blocks(title="Tinder Scanner Pro") as demo:
gr.Markdown("# π Tinder Scanner Pro β High-Similarity Face Matcher")
gr.Markdown("Scan a face image to find high-similarity matches (0.80-1.00) in Tinder profiles.")
with gr.Tabs():
with gr.TabItem("Setup Data"):
with gr.Row():
with gr.Column():
gr.Markdown("### Load from profiles.json (auto)")
auto_load_btn = gr.Button("Load from profiles.json", variant="primary")
gr.Markdown("### OR: Paste JSON Data")
json_input = gr.Textbox(
label="JSON Profile Data",
placeholder='Paste JSON data here. Format: [{"Id": "...", "Name": "...", "Age": 25, "Photos": ["url1", "url2"]}]',
lines=10
)
manual_load_btn = gr.Button("Load Pasted Data", variant="secondary")
data_status = gr.Textbox(label="Status")
auto_load_btn.click(
fn=lambda: scanner.load_data(),
outputs=[data_status]
)
manual_load_btn.click(
fn=scanner.load_data,
inputs=[json_input],
outputs=[data_status]
)
with gr.TabItem("Scan Face"):
with gr.Row():
with gr.Column():
user_image = gr.Image(type="pil", label="Upload a Face Image")
scan_btn = gr.Button("Run the Scan", variant="primary")
with gr.Column():
matches_gallery = gr.Gallery(label="π High-Similarity Matches", columns=[3], height="auto")
match_details = gr.Textbox(label="Match Details")
risk_score = gr.Textbox(label="π¨ Similarity Score")
gpt_analysis = gr.Textbox(label="π§ GPT-4 Analysis")
scan_btn.click(
fn=lambda img: scanner.scan_face(img, min_score=0.80),
inputs=[user_image],
outputs=[matches_gallery, match_details, risk_score, gpt_analysis]
)
return demo
# βββββββββββββββββββββββββββββββββββββββββββββ
# π STEP 12: MAIN EXECUTION
# βββββββββββββββββββββββββββββββββββββββββββββ
if __name__ == "__main__":
demo = create_ui()
demo.launch() |