import os import json import torch import clip import faiss import numpy as np from PIL import Image import gradio as gr import openai import requests import sqlite3 from tqdm import tqdm from io import BytesIO from datetime import datetime from pathlib import Path # ───────────────────────────────────────────── # 🧠 STEP 1: LOAD CLIP MODEL # ───────────────────────────────────────────── device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) # ───────────────────────────────────────────── # 📁 STEP 2: PATH CONFIGURATION # ───────────────────────────────────────────── # Default paths for Hugging Face Spaces HF_SPACE_PATH = os.getenv("HF_SPACE_PATH", ".") DEFAULT_JSON_PATH = os.path.join(HF_SPACE_PATH, "profiles.json") DEFAULT_DB_PATH = os.path.join(HF_SPACE_PATH, "tinder_profiles.db") # ───────────────────────────────────────────── # 🗄️ STEP 3: DATABASE SETUP # ───────────────────────────────────────────── def setup_database(db_path=DEFAULT_DB_PATH): """Initialize SQLite database with required tables""" conn = sqlite3.connect(db_path) cursor = conn.cursor() # Create tables if they don't exist cursor.execute(''' CREATE TABLE IF NOT EXISTS profiles ( id TEXT PRIMARY KEY, name TEXT, age INTEGER, bio TEXT, added_date TEXT ) ''') cursor.execute(''' CREATE TABLE IF NOT EXISTS photos ( photo_id INTEGER PRIMARY KEY AUTOINCREMENT, profile_id TEXT, url TEXT UNIQUE, embedding BLOB, FOREIGN KEY (profile_id) REFERENCES profiles(id) ) ''') conn.commit() conn.close() print(f"✅ Database initialized at {db_path}") return db_path # ───────────────────────────────────────────── # 📦 STEP 4: PROFILE DATA MANAGEMENT # ───────────────────────────────────────────── def load_profile_data(json_file_path=None, json_data=None): """Load profile data either from a file or directly from JSON data""" if json_file_path and os.path.exists(json_file_path): with open(json_file_path, 'r') as f: profiles = json.load(f) elif json_data: profiles = json_data else: # Default to profiles.json in the Hugging Face space if os.path.exists(DEFAULT_JSON_PATH): with open(DEFAULT_JSON_PATH, 'r') as f: profiles = json.load(f) else: # Sample data structure as fallback profiles = [ { "Id": "sample-id", "Name": "Sample Profile", "Age": 25, "Bio": "Sample bio", "Photos": [ "https://example.com/sample.jpg" ] } ] return profiles def store_profiles_in_db(profiles, db_path=DEFAULT_DB_PATH): """Store profiles in the SQLite database""" conn = sqlite3.connect(db_path) cursor = conn.cursor() today = datetime.now().strftime("%Y-%m-%d") new_profiles = 0 new_photos = 0 for profile in tqdm(profiles, desc="Storing profiles"): profile_id = profile.get("Id", str(hash(profile.get("Name", "") + str(profile.get("Age", 0))))) name = profile.get("Name", "Unknown") age = profile.get("Age", 0) bio = profile.get("Bio", "") # Check if profile exists cursor.execute("SELECT id FROM profiles WHERE id=?", (profile_id,)) exists = cursor.fetchone() if not exists: cursor.execute( "INSERT INTO profiles (id, name, age, bio, added_date) VALUES (?, ?, ?, ?, ?)", (profile_id, name, age, bio, today) ) new_profiles += 1 # Add photos for photo_url in profile.get("Photos", []): cursor.execute("SELECT photo_id FROM photos WHERE url=?", (photo_url,)) photo_exists = cursor.fetchone() if not photo_exists: cursor.execute( "INSERT INTO photos (profile_id, url, embedding) VALUES (?, ?, NULL)", (profile_id, photo_url) ) new_photos += 1 conn.commit() conn.close() return new_profiles, new_photos # ───────────────────────────────────────────── # 🖼️ STEP 5: IMAGE PROCESSING & EMBEDDINGS # ───────────────────────────────────────────── def download_and_process_image(url): """Download image from URL and return PIL Image""" try: response = requests.get(url, timeout=10) response.raise_for_status() img = Image.open(BytesIO(response.content)).convert("RGB") return img except Exception as e: print(f"⚠️ Error downloading image from {url}: {e}") return None def generate_and_store_embeddings(db_path=DEFAULT_DB_PATH, max_images=1000): """Generate CLIP embeddings for profile images and store in database""" conn = sqlite3.connect(db_path) cursor = conn.cursor() # Get photos without embeddings cursor.execute(""" SELECT p.photo_id, p.url, pr.id, pr.name, pr.age, pr.bio FROM photos p JOIN profiles pr ON p.profile_id = pr.id WHERE p.embedding IS NULL LIMIT ? """, (max_images,)) photos = cursor.fetchall() processed = 0 errors = 0 print(f"🧠 Generating CLIP embeddings for {len(photos)} new images...") for photo in tqdm(photos, desc="Processing images"): photo_id, url, profile_id, name, age, bio = photo try: img = download_and_process_image(url) if img is None: errors += 1 continue img_input = preprocess(img).unsqueeze(0).to(device) with torch.no_grad(): emb = model.encode_image(img_input).cpu().numpy().flatten() emb /= np.linalg.norm(emb) # Normalize # Store the embedding as a binary blob cursor.execute( "UPDATE photos SET embedding = ? WHERE photo_id = ?", (emb.tobytes(), photo_id) ) processed += 1 # Commit every 10 images to avoid losing work if processed % 10 == 0: conn.commit() except Exception as e: print(f"⚠️ Error with {url}: {e}") errors += 1 conn.commit() conn.close() print(f"✅ Finished embedding {processed} images with {errors} errors.") return processed, errors def load_embeddings_from_db(db_path=DEFAULT_DB_PATH): """Load all embeddings, urls and profile info from the database""" conn = sqlite3.connect(db_path) cursor = conn.cursor() cursor.execute(""" SELECT p.embedding, p.url, pr.id, pr.name, pr.age, pr.bio FROM photos p JOIN profiles pr ON p.profile_id = pr.id WHERE p.embedding IS NOT NULL """) result = cursor.fetchall() conn.close() embeddings = [] image_urls = [] profile_info = [] for row in result: embedding_bytes, url, profile_id, name, age, bio = row if embedding_bytes: # Ensure we have embedding data # Convert bytes back to numpy array emb = np.frombuffer(embedding_bytes, dtype=np.float32) embeddings.append(emb) image_urls.append(url) profile_info.append({ "Id": profile_id, "Name": name, "Age": age, "Bio": bio }) if embeddings: embeddings_array = np.vstack(embeddings).astype("float32") else: embeddings_array = np.array([]).astype("float32") print(f"📊 Loaded {len(embeddings_array)} embeddings from database") return embeddings_array, image_urls, profile_info # ───────────────────────────────────────────── # ⚡ STEP 6: BUILD FAISS INDEX # ───────────────────────────────────────────── def build_faiss_index(embeddings): """Build FAISS index from embeddings""" if len(embeddings) == 0: return None dimension = embeddings.shape[1] index = faiss.IndexFlatIP(dimension) index.add(embeddings) return index # ───────────────────────────────────────────── # 🔐 STEP 7: OPENAI API SETUP # ───────────────────────────────────────────── def init_openai(): openai.api_key = os.getenv("OPENAI_API_KEY") if not openai.api_key: print("⚠️ Warning: OPENAI_API_KEY not found. GPT-4 analysis will not be available.") # ───────────────────────────────────────────── # 🔎 STEP 8: SEARCH FUNCTIONALITY # ───────────────────────────────────────────── def search_similar_faces(user_image, index, image_urls, profile_info, top_k=20, min_score=0.80): """Search for similar faces using CLIP + FAISS with minimum score threshold""" if index is None: return [], [], 0, "No index available. Please load profile data first." try: user_image = user_image.convert("RGB") tensor = preprocess(user_image).unsqueeze(0).to(device) with torch.no_grad(): query_emb = model.encode_image(tensor).cpu().numpy().astype("float32") query_emb /= np.linalg.norm(query_emb) except Exception as e: return [], [], 0, f"Image preprocessing failed: {e}" # Search for more matches than we need (we'll filter by score) scores, indices = index.search(query_emb, top_k) scores, indices = scores.flatten(), indices.flatten() matching_images = [] match_details = [] for i in range(len(indices)): idx = indices[i] score = scores[i] # Only include matches with score >= min_score (0.80) if score < min_score: continue try: url = image_urls[idx] info = profile_info[idx] img = download_and_process_image(url) if img: matching_images.append(img) match_details.append({ "url": url, "score": score, "info": info }) except Exception as e: print(f"⚠️ Error processing match at index {idx}: {e}") # Calculate risk score based on high-quality matches only match_scores = [d["score"] for d in match_details] risk_score = min(100, int(np.mean(match_scores) * 100)) if match_scores else 0 return matching_images, match_details, risk_score # ───────────────────────────────────────────── # 🧠 STEP 9: GPT-4 ANALYSIS # ───────────────────────────────────────────── def generate_gpt4_analysis(match_details): """Generate fun analysis using GPT-4""" if not openai.api_key: return "GPT-4 analysis not available (API key not configured)" if not match_details: return "No high-similarity matches found for analysis" try: names = [f"{d['info']['Name']} ({d['info']['Age']})" for d in match_details] scores = [f"{d['score']:.2f}" for d in match_details] prompt = ( f"The uploaded face matches closely with: {', '.join(names)} with similarity scores: {', '.join(scores)}. " f"These are very high similarity matches (0.80-1.00 range). " f"Based on this, should the user be suspicious? " f"Analyze like a funny but smart AI dating detective. Keep it concise." ) response = openai.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You're a playful but intelligent AI face-matching analyst."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content except Exception as e: return f"(OpenAI error): {e}" # ───────────────────────────────────────────── # 🎛️ STEP 10: APPLICATION CLASS # ───────────────────────────────────────────── class TinderScanner: def __init__(self): self.index = None self.image_urls = [] self.profile_info = [] self.profiles = [] self.db_path = None # Setup database self.db_path = setup_database() # Initialize OpenAI init_openai() def init_from_database(self): """Initialize scanner from database content""" try: # Load embeddings from database embeddings, self.image_urls, self.profile_info = load_embeddings_from_db(self.db_path) if len(embeddings) > 0: self.index = build_faiss_index(embeddings) return f"✅ Successfully loaded {len(self.image_urls)} photos from database" else: return "⚠️ No embeddings found in database. Upload profile data first." except Exception as e: return f"❌ Error loading from database: {e}" def load_data(self, json_text=None, json_file=None): """Load profile data and build index""" try: # Load profiles from JSON if json_text: json_data = json.loads(json_text) self.profiles = load_profile_data(json_data=json_data) elif json_file: self.profiles = load_profile_data(json_file_path=json_file) else: # Try to load from default location self.profiles = load_profile_data(json_file_path=DEFAULT_JSON_PATH) if not self.profiles: return "⚠️ No profile data found" # Store profiles in database new_profiles, new_photos = store_profiles_in_db(self.profiles, self.db_path) # Generate embeddings for new photos processed, errors = generate_and_store_embeddings(self.db_path) # Load all embeddings (including newly processed ones) embeddings, self.image_urls, self.profile_info = load_embeddings_from_db(self.db_path) if len(embeddings) > 0: self.index = build_faiss_index(embeddings) return (f"✅ Database updated: {new_profiles} new profiles, {new_photos} new photos, " f"{processed} photos processed. Total: {len(self.image_urls)} photos indexed.") else: return "⚠️ No valid images found in the provided data" except Exception as e: return f"❌ Error loading data: {e}" def scan_face(self, user_image, min_score=0.80): """Process a user image and find matches with minimum score""" # Try to initialize from database if not already if not self.index: init_result = self.init_from_database() if "Successfully" not in init_result: return [], "", "", "Please load profile data first by providing JSON input" if user_image is None: return [], "", "", "Please upload a face image" images, match_details, risk_score = search_similar_faces( user_image, self.index, self.image_urls, self.profile_info, min_score=min_score ) if not match_details: return [], "", "0/100", "No matches with similarity score ≥ 0.80 found" # Format match captions captions = [] for detail in match_details: info = detail["info"] captions.append(f"{info['Name']} ({info['Age']}) - Score: {detail['score']:.2f}") # Generate GPT-4 analysis explanation = generate_gpt4_analysis(match_details) return images, "\n".join(captions), f"{risk_score}/100", explanation # ───────────────────────────────────────────── # 🖥️ STEP 11: GRADIO UI # ───────────────────────────────────────────── def create_ui(): scanner = TinderScanner() with gr.Blocks(title="Tinder Scanner Pro") as demo: gr.Markdown("# 🔍 Tinder Scanner Pro – High-Similarity Face Matcher") gr.Markdown("Scan a face image to find high-similarity matches (0.80-1.00) in Tinder profiles.") with gr.Tabs(): with gr.TabItem("Setup Data"): with gr.Row(): with gr.Column(): gr.Markdown("### Load from profiles.json (auto)") auto_load_btn = gr.Button("Load from profiles.json", variant="primary") gr.Markdown("### OR: Paste JSON Data") json_input = gr.Textbox( label="JSON Profile Data", placeholder='Paste JSON data here. Format: [{"Id": "...", "Name": "...", "Age": 25, "Photos": ["url1", "url2"]}]', lines=10 ) manual_load_btn = gr.Button("Load Pasted Data", variant="secondary") data_status = gr.Textbox(label="Status") auto_load_btn.click( fn=lambda: scanner.load_data(), outputs=[data_status] ) manual_load_btn.click( fn=scanner.load_data, inputs=[json_input], outputs=[data_status] ) with gr.TabItem("Scan Face"): with gr.Row(): with gr.Column(): user_image = gr.Image(type="pil", label="Upload a Face Image") scan_btn = gr.Button("Run the Scan", variant="primary") with gr.Column(): matches_gallery = gr.Gallery(label="🔍 High-Similarity Matches", columns=[3], height="auto") match_details = gr.Textbox(label="Match Details") risk_score = gr.Textbox(label="🚨 Similarity Score") gpt_analysis = gr.Textbox(label="🧠 GPT-4 Analysis") scan_btn.click( fn=lambda img: scanner.scan_face(img, min_score=0.80), inputs=[user_image], outputs=[matches_gallery, match_details, risk_score, gpt_analysis] ) return demo # ───────────────────────────────────────────── # 🚀 STEP 12: MAIN EXECUTION # ───────────────────────────────────────────── if __name__ == "__main__": demo = create_ui() demo.launch()