Spaces:
Sleeping
Sleeping
File size: 20,176 Bytes
ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 5a11f8e ad31317 621d3d6 ad31317 b009ea4 ad31317 b009ea4 5a11f8e b009ea4 621d3d6 b009ea4 ad31317 b009ea4 ad31317 621d3d6 ad31317 b009ea4 ad31317 b009ea4 621d3d6 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 b009ea4 ad31317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
# --- Global Variables to store processed data ---
global_df = None
global_brand_resale = None
global_brand_resale_mean = 0
global_fair_market_value_mean = 0
global_purchase_amount_mean = 0
global_monthly_payment_mean = 0
global_ownership_types = []
# === Truck ID Cleaner ===
def clean_truck_id(val):
"""
Cleans and standardizes truck IDs by removing "SPOT-" prefix and stripping whitespace.
Handles NaN values by returning None.
"""
if pd.isna(val):
return None
return str(val).strip().replace("SPOT-", "")
# === Load and Prepare Data ===
def load_and_clean_data():
"""
Loads data from various Excel files, performs initial cleaning,
and converts relevant columns to appropriate data types (numeric, datetime).
Includes error handling for missing files.
"""
try:
# Load files
finance = pd.read_excel("truck-finance.xlsx")
maintenance = pd.read_excel("maintenancepo-truck.xlsx")
distance = pd.read_excel("vehicle-distance-traveled.xlsx")
odometer = pd.read_excel("truck-odometer-data-week.xlsx")
stub = pd.read_excel("stub-data.xlsx")
paper = pd.read_excel("truck-paper.xlsx")
# --- Explicitly convert relevant columns to numeric and datetime ---
# Coerce errors will turn unparseable values into NaN
finance['fair_market_value'] = pd.to_numeric(finance['fair_market_value'], errors='coerce')
finance['purchase_amount'] = pd.to_numeric(finance['purchase_amount'], errors='coerce')
finance['monthly_payment'] = pd.to_numeric(finance['monthly_payment'], errors='coerce')
maintenance['amount'] = pd.to_numeric(maintenance['amount'], errors='coerce')
distance['date'] = pd.to_datetime(distance['date'], errors='coerce')
distance['distance'] = pd.to_numeric(distance['distance'], errors='coerce')
odometer['pay_date'] = pd.to_datetime(odometer['pay_date'], errors='coerce')
odometer['odometer'] = pd.to_numeric(odometer['odometer'], errors='coerce')
paper['truck_price'] = pd.to_numeric(paper['truck_price'], errors='coerce')
print("Finance columns after loading:", finance.columns)
print("Maintenance columns after loading:", maintenance.columns)
print("Stub columns after loading:", stub.columns)
print("Distance columns after loading:", distance.columns)
print("Odometer columns after loading:", odometer.columns)
# --- Clean & Standardize IDs ---
finance["truck_id"] = finance["unit_id"].apply(clean_truck_id)
maintenance["truck_id"] = maintenance["unit_id"].apply(clean_truck_id)
stub["truck_id"] = stub["TRUCK"].apply(clean_truck_id)
odometer["truck_id"] = odometer["unit_id"].apply(clean_truck_id)
distance["truck_id"] = distance["unit_id"].apply(clean_truck_id)
return finance, maintenance, distance, odometer, stub, paper
except FileNotFoundError as e:
print(f"Error: One or more input files not found. Please ensure all Excel files are in the same directory as the script. Missing file: {e.filename}")
raise gr.Error(f"Required file not found: {e.filename}. Please upload all necessary Excel files.")
except Exception as e:
print(f"An unexpected error occurred during data loading: {e}")
raise gr.Error(f"An error occurred during data loading: {e}")
# === Initial Data Processing (called once at app startup) ===
def initial_data_processing():
"""
Loads, cleans, merges, and prepares all data for the Gradio app.
Populates global variables used by prediction and plotting functions.
"""
global global_df, global_brand_resale, global_brand_resale_mean, \
global_fair_market_value_mean, global_purchase_amount_mean, \
global_monthly_payment_mean, global_ownership_types
try:
finance, maintenance, distance, odometer, stub, paper = load_and_clean_data()
# --- Maintenance Summary ---
maintenance_summary = maintenance.groupby("truck_id").agg(
total_repairs=("amount", "sum"),
shop_visits=("truck_id", "count")
).reset_index()
# --- Stub Usage ---
stub_summary = stub.groupby("truck_id").agg(
usage_records=("truck_id", "count")
).reset_index()
# --- 10-Week Distance Summary ---
latest = distance['date'].max()
last10 = distance[distance['date'].notna() & (distance['date'] >= (latest - pd.Timedelta(weeks=10)))]
distance_summary = last10.groupby("truck_id").agg(
last_10w_miles=('distance', 'sum')
).reset_index()
# --- Odometer Summary ---
odometer_cleaned = odometer[odometer['pay_date'].notna() & odometer['odometer'].notna()]
odo_summary = odometer_cleaned.sort_values(['truck_id', 'pay_date']).groupby("truck_id").agg(
odo_start=('odometer', 'first'),
odo_end=('odometer', 'last')
).reset_index()
odo_summary["odo_diff"] = odo_summary["odo_end"] - odo_summary["odo_start"]
# --- Resale Values (avg per make) ---
paper['truck_brand'] = paper['truck_brand'].str.upper()
global_brand_resale = paper.groupby("truck_brand").agg(
avg_resale_value=('truck_price', 'mean')
).reset_index()
global_brand_resale_mean = global_brand_resale['avg_resale_value'].mean()
# --- Merge All Sources ---
df = finance.merge(maintenance_summary, on="truck_id", how="left")
df = df.merge(stub_summary, on="truck_id", how="left")
df = df.merge(distance_summary, on="truck_id", how="left")
df = df.merge(odo_summary[['truck_id', 'odo_diff']], on="truck_id", how="left")
df['make'] = df['make'].str.upper()
df = df.merge(global_brand_resale, left_on='make', right_on='truck_brand', how='left')
df.drop(columns=['truck_brand'], inplace=True)
# --- Standardize 'ownership_type' ---
df['ownership_type'] = df['ownership_type'].astype(str).str.strip().str.upper()
global_ownership_types = df['ownership_type'].unique().tolist()
# Ensure 'NAN' is handled if it appears due to missing ownership types
if 'NAN' in global_ownership_types:
global_ownership_types.remove('NAN')
global_ownership_types.sort() # Sort for better display in dropdown
# Calculate means for imputation, handling potential NaN means if column is all NaN
global_fair_market_value_mean = df['fair_market_value'].mean()
global_purchase_amount_mean = df['purchase_amount'].mean()
global_monthly_payment_mean = df['monthly_payment'].mean()
# --- Handle NaNs for decision-making columns ---
df["total_repairs"] = df["total_repairs"].fillna(0)
df["shop_visits"] = df["shop_visits"].fillna(0)
df["usage_records"] = df["usage_records"].fillna(0)
df["last_10w_miles"] = df["last_10w_miles"].fillna(0)
df["odo_diff"] = df["odo_diff"].fillna(0).apply(lambda x: 0 if x < 0 else x)
df["avg_resale_value"] = df["avg_resale_value"].fillna(global_brand_resale_mean if not pd.isna(global_brand_resale_mean) else 0)
df["fair_market_value"] = df["fair_market_value"].fillna(global_fair_market_value_mean if not pd.isna(global_fair_market_value_mean) else 0)
df["purchase_amount"] = df["purchase_amount"].fillna(global_purchase_amount_mean if not pd.isna(global_purchase_amount_mean) else 0)
df["monthly_payment"] = df["monthly_payment"].fillna(global_monthly_payment_mean if not pd.isna(global_monthly_payment_mean) else 0)
# --- Add CPM ---
# Replace odo_diff = 0 with 1 for CPM calculation to avoid division by zero and get non-zero CPM
df['odo_diff_for_cpm'] = df['odo_diff'].replace(0, 1)
df["CPM"] = df["total_repairs"] / df["odo_diff_for_cpm"]
df["CPM"] = df["CPM"].replace([np.inf, -np.inf], np.nan)
df["CPM"] = df["CPM"].fillna(0)
# --- Apply decision logic to the full dataset for plotting the breakdown ---
def make_decision_for_df(row):
# This is the same logic as before, applied to the full DataFrame
# 1. Scrap:
if (row['total_repairs'] > 8000 and
row['last_10w_miles'] < 500 and
row['odo_diff'] > 70000 and
row['CPM'] > 0.2 and
row['purchase_amount'] < 20000):
return "Scrap"
# 2. Sell:
elif (row['total_repairs'] > 5000 and
row['last_10w_miles'] < 1000 and
row['fair_market_value'] > row['purchase_amount'] and
row['odo_diff'] > 50000):
return "Sell"
# 3. Lease:
elif (row['ownership_type'] == 'OPERATING LEASE' and
row['monthly_payment'] > 600 and
row['purchase_amount'] < 30000 and
row['fair_market_value'] > 28000 and
row['odo_diff'] < 40000):
return "Lease"
# 4. Keep:
elif (row['total_repairs'] < 3000 and
row['last_10w_miles'] > 2000 and
row['fair_market_value'] < row['purchase_amount'] and
row['odo_diff'] < 30000):
return "Keep"
# 5. Analyze: Default
else:
return "Analyze"
df["Decision"] = df.apply(make_decision_for_df, axis=1)
global_df = df.copy() # Make a copy to avoid SettingWithCopyWarning if modified later
print("Initial data processing complete. Data loaded for Gradio app.")
except gr.Error as e:
print(f"Gradio Error during initial data processing: {e}")
# If an error occurs, ensure global_df is an empty DataFrame to prevent further errors
global_df = pd.DataFrame()
except Exception as e:
print(f"Unexpected error during initial data processing: {e}")
global_df = pd.DataFrame()
# === Decision Prediction Function for Gradio Interface ===
def predict_decision(total_repairs, last_10w_miles, odo_diff, cpm, purchase_amount, fair_market_value, monthly_payment, ownership_type_str, make):
"""
Predicts the decision for a single truck based on user inputs.
Uses globally pre-calculated means for missing values if inputs are None.
"""
# Handle potentially None inputs from Gradio and ensure numeric types
total_repairs = float(total_repairs) if total_repairs is not None else 0.0
last_10w_miles = float(last_10w_miles) if last_10w_miles is not None else 0.0
odo_diff = float(odo_diff) if odo_diff is not None else 0.0
cpm = float(cpm) if cpm is not None else 0.0
# Use global means for financial values if user input is None, and ensure they are float
purchase_amount = float(purchase_amount) if purchase_amount is not None else (global_purchase_amount_mean if not pd.isna(global_purchase_amount_mean) else 0.0)
fair_market_value = float(fair_market_value) if fair_market_value is not None else (global_fair_market_value_mean if not pd.isna(global_fair_market_value_mean) else 0.0)
monthly_payment = float(monthly_payment) if monthly_payment is not None else (global_monthly_payment_mean if not pd.isna(global_monthly_payment_mean) else 0.0)
ownership_type_str = ownership_type_str.strip().upper() if ownership_type_str is not None else "UNKNOWN"
make = make.strip().upper() if make is not None else "UNKNOWN"
# For avg_resale_value, try to get it from the pre-calculated global_brand_resale, else use global mean
avg_resale_value = 0.0 # Default if global_brand_resale is not loaded
if global_brand_resale is not None:
avg_resale_value_lookup = global_brand_resale.loc[global_brand_resale['truck_brand'] == make, 'avg_resale_value'].values
if len(avg_resale_value_lookup) > 0:
avg_resale_value = avg_resale_value_lookup[0]
else:
avg_resale_value = global_brand_resale_mean if not pd.isna(global_brand_resale_mean) else 0.0
# Apply the same logic as make_decision, but directly with the input variables
# 1. Scrap:
if (total_repairs > 8000 and
last_10w_miles < 500 and
odo_diff > 70000 and
cpm > 0.2 and
purchase_amount < 20000):
return "Scrap"
# 2. Sell:
elif (total_repairs > 5000 and
last_10w_miles < 1000 and
fair_market_value > purchase_amount and
odo_diff > 50000):
return "Sell"
# 3. Lease:
elif (ownership_type_str == 'OPERATING LEASE' and
monthly_payment > 600 and
purchase_amount < 30000 and
fair_market_value > 28000 and
odo_diff < 40000):
return "Lease"
# 4. Keep:
elif (total_repairs < 3000 and
last_10w_miles > 2000 and
fair_market_value < purchase_amount and
odo_diff < 30000):
return "Keep"
# 5. Analyze: Default
else:
return "Analyze"
# === Plot Generation Function for Gradio Interface ===
def generate_plots():
"""
Generates various plots from the processed global_df and returns them as base64 encoded images.
"""
if global_df is None or global_df.empty:
# Return a list of None values for the images if data is not loaded
return [None, None, None, None]
plot_buffers = [] # Store image bytes here
# Plot 1: Decision Breakdown
try:
plt.figure(figsize=(8, 6))
# Add hue and set legend=False to resolve FutureWarning
sns.countplot(data=global_df, x='Decision', hue='Decision', palette='viridis', order=global_df['Decision'].value_counts().index, legend=False)
plt.title('Decision Breakdown for the Fleet')
plt.xlabel('Decision')
plt.ylabel('Number of Trucks')
plt.grid(axis='y', linestyle='--', alpha=0.7)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
# Encode to base64 and prepend data URI
plot_buffers.append(base64.b64encode(buf.getvalue()).decode('utf-8'))
except Exception as e:
print(f"Error generating Decision Breakdown plot: {e}")
plot_buffers.append(None) # Append None if plot generation fails
# Plot 2: Total Repairs by Ownership Type
try:
plt.figure(figsize=(12, 7))
# Filter out NaN/None ownership types if any remain for plotting robustness
plot_df = global_df[global_df['ownership_type'].notna() & (global_df['ownership_type'] != 'NAN')]
if not plot_df.empty:
# Add hue and set legend=False to resolve FutureWarning
sns.boxplot(data=plot_df, x='ownership_type', y='total_repairs', hue='ownership_type', palette='coolwarm', legend=False)
plt.title('Total Repairs by Ownership Type')
plt.xlabel('Ownership Type')
plt.ylabel('Total Repairs ($)')
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
# Encode to base64 and prepend data URI
plot_buffers.append(base64.b64encode(buf.getvalue()).decode('utf-8'))
else:
plot_buffers.append(None)
except Exception as e:
print(f"Error generating Total Repairs plot: {e}")
plot_buffers.append(None)
# Plot 3: Last 10 Weeks Miles Distribution
try:
plt.figure(figsize=(10, 6))
sns.histplot(data=global_df, x='last_10w_miles', bins=30, kde=True, color='skyblue')
plt.title('Distribution of Last 10 Weeks Miles')
plt.xlabel('Last 10 Weeks Miles')
plt.ylabel('Number of Trucks')
plt.grid(axis='y', linestyle='--', alpha=0.7)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
# Encode to base64 and prepend data URI
plot_buffers.append(base64.b64encode(buf.getvalue()).decode('utf-8'))
except Exception as e:
print(f"Error generating Miles Distribution plot: {e}")
plot_buffers.append(None)
# Plot 4: Fair Market Value vs. Purchase Amount
try:
plt.figure(figsize=(10, 7))
# Ensure columns are numeric and handle potential NaNs for plotting
plot_df = global_df.dropna(subset=['purchase_amount', 'fair_market_value', 'Decision'])
if not plot_df.empty:
sns.scatterplot(data=plot_df, x='purchase_amount', y='fair_market_value', hue='Decision', palette='deep', alpha=0.7)
plt.title('Fair Market Value vs. Purchase Amount by Decision')
plt.xlabel('Purchase Amount ($)')
plt.ylabel('Fair Market Value ($)')
plt.grid(linestyle='--', alpha=0.7)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
# Encode to base64 and prepend data URI
plot_buffers.append(base64.b64encode(buf.getvalue()).decode('utf-8'))
else:
plot_buffers.append(None)
except Exception as e:
print(f"Error generating FMV vs Purchase plot: {e}")
plot_buffers.append(None)
return plot_buffers
# --- Initial Data Loading and Processing Call ---
initial_data_processing()
# --- Gradio Interface Definition ---
# Define inputs for the Decision Predictor tab
# Use the dynamically populated global_ownership_types for the dropdown choices
decision_inputs = [
gr.Number(label="Total Repairs ($)", value=0.0),
gr.Number(label="Last 10 Weeks Miles", value=0.0),
gr.Number(label="Odometer Difference (odo_diff)", value=0.0),
gr.Number(label="Cost Per Mile (CPM)", value=0.0),
gr.Number(label="Purchase Amount ($)", value=0.0),
gr.Number(label="Fair Market Value ($)", value=0.0),
gr.Number(label="Monthly Payment ($)", value=0.0),
gr.Dropdown(label="Ownership Type", choices=global_ownership_types, value=global_ownership_types[0] if global_ownership_types else "OWNER OPERATOR OWNED"),
gr.Textbox(label="Make (e.g., FORD)", value="FORD")
]
# Create the Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Truck Evaluation Application")
gr.Markdown("Use this app to predict truck decisions and visualize fleet data.")
with gr.Tab("Decision Predictor"):
gr.Markdown("## Predict Truck Decision")
gr.Markdown("Enter the details for a single truck to get a decision.")
with gr.Row():
for input_comp in decision_inputs:
input_comp.render()
predict_button = gr.Button("Get Decision")
decision_output = gr.Textbox(label="Decision", interactive=False)
predict_button.click(
fn=predict_decision,
inputs=decision_inputs,
outputs=decision_output
)
with gr.Tab("Data Visualizations"):
gr.Markdown("## Fleet Data Visualizations")
gr.Markdown("Explore insights from your truck data.")
plot_button = gr.Button("Generate Plots")
# Output components for plots
# These are just placeholders; the generate_plots function will return the actual image bytes
plot_outputs_components = [
gr.Image(label="Decision Breakdown", interactive=False, visible=True),
gr.Image(label="Total Repairs by Ownership Type", interactive=False, visible=True),
gr.Image(label="Last 10 Weeks Miles Distribution", interactive=False, visible=True),
gr.Image(label="Fair Market Value vs. Purchase Amount", interactive=False, visible=True)
]
plot_button.click(
fn=generate_plots,
inputs=[],
outputs=plot_outputs_components
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() |