Spaces:
Running
Running
File size: 7,596 Bytes
7d18b6a d4c64bc 777758b 7d18b6a d4c64bc 7d18b6a a9577f3 777758b d4c64bc 777758b 7d18b6a d4c64bc 777758b 7d18b6a 777758b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import sounddevice as sd
import scipy.io.wavfile as wav
import numpy as np
from pydub import AudioSegment
import io
import tempfile
import os
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class AudioProcessor:
def __init__(self):
self.sample_rate = 16000
self.channels = 1
def process_audio(self, audio_file):
"""Process incoming audio file and convert to proper format"""
with tempfile.TemporaryDirectory() as temp_dir:
# Save incoming audio
input_path = os.path.join(temp_dir, 'input.webm')
audio_file.save(input_path)
# Convert to WAV using pydub
audio = AudioSegment.from_file(input_path)
audio = audio.set_channels(self.channels)
audio = audio.set_frame_rate(self.sample_rate)
output_path = os.path.join(temp_dir, 'output.wav')
audio.export(output_path, format='wav')
# Read the processed audio file
return output_path
def record_audio(self, duration=5):
"""Record audio using sounddevice"""
recording = sd.rec(
int(duration * self.sample_rate),
samplerate=self.sample_rate,
channels=self.channels
)
sd.wait()
return recording
try:
import pyaudio
except ImportError:
print("Warning: PyAudio not available, speech functionality will be limited")
# Initialize Flask app
app = Flask(__name__, static_folder='static')
# Load environment variables
load_dotenv()
# Groq API Configuration
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
MODEL = "llama3-70b-8192"
# Initialize speech recognition
recognizer = sr.Recognizer()
def init_speech_recognition():
"""Initialize speech recognition with fallback options"""
try:
recognizer = sr.Recognizer()
return recognizer
except Exception as e:
logger.error(f"Failed to initialize speech recognition: {e}")
return None
# Store conversation history
conversations = {}
def load_base_prompt():
try:
with open("base_prompt.txt", "r") as file:
return file.read().strip()
except FileNotFoundError:
print("Error: base_prompt.txt file not found.")
return "You are a helpful assistant for language learning."
# Load the base prompt
base_prompt = load_base_prompt()
def chat_with_groq(user_message, conversation_id=None):
try:
# Get conversation history or create new
messages = conversations.get(conversation_id, [])
if not messages:
messages.append({"role": "system", "content": base_prompt})
# Add user message
messages.append({"role": "user", "content": user_message})
# Get completion from Groq
completion = client.chat.completions.create(
model=MODEL,
messages=messages,
temperature=0.1,
max_tokens=1024
)
# Add assistant's response to history
assistant_message = completion.choices[0].message.content.strip()
messages.append({"role": "assistant", "content": assistant_message})
# Update conversation history
if conversation_id:
conversations[conversation_id] = messages
return assistant_message
except Exception as e:
print(f"Error in chat_with_groq: {str(e)}")
return f"I apologize, but I'm having trouble responding right now. Error: {str(e)}"
def text_to_speech(text):
try:
tts = gTTS(text=text, lang='en')
audio_io = io.BytesIO()
tts.write_to_fp(audio_io)
audio_io.seek(0)
return audio_io
except Exception as e:
print(f"Error in text_to_speech: {str(e)}")
return None
def speech_to_text(audio_file):
try:
# Save the uploaded audio to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
audio_file.save(temp_audio.name)
# Use SpeechRecognition to convert speech to text
with sr.AudioFile(temp_audio.name) as source:
# Adjust recognition settings
recognizer.dynamic_energy_threshold = True
recognizer.energy_threshold = 4000
# Record the entire audio file
audio = recognizer.record(source)
# Perform recognition with increased timeout
text = recognizer.recognize_google(audio, language='en-US')
return text
except sr.UnknownValueError:
return "Could not understand audio"
except sr.RequestError as e:
return f"Could not request results; {str(e)}"
except Exception as e:
print(f"Error in speech_to_text: {str(e)}")
return None
finally:
# Clean up temporary file
try:
os.unlink(temp_audio.name)
except:
pass
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/chat', methods=['POST'])
def chat():
try:
data = request.get_json()
user_message = data.get('message', '')
conversation_id = data.get('conversation_id', str(uuid.uuid4()))
if not user_message:
return jsonify({'error': 'No message provided'}), 400
# Get response from Groq
response = chat_with_groq(user_message, conversation_id)
# Generate voice response
audio_io = text_to_speech(response)
result = {
'response': response,
'conversation_id': conversation_id
}
if audio_io:
audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
result['voice_response'] = audio_base64
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/api/voice', methods=['POST'])
def handle_voice():
try:
if 'audio' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
audio_file = request.files['audio']
conversation_id = request.form.get('conversation_id', str(uuid.uuid4()))
# Process audio
audio_processor = AudioProcessor()
wav_path = audio_processor.process_audio(audio_file)
# Perform speech recognition
recognizer = sr.Recognizer()
with sr.AudioFile(wav_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
if not text:
return jsonify({'error': 'Could not transcribe audio'}), 400
# Get chatbot response
response = chat_with_groq(text, conversation_id)
# Generate voice response
audio_io = text_to_speech(response)
result = {
'text': text,
'response': response,
'conversation_id': conversation_id
}
if audio_io:
audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
result['voice_response'] = audio_base64
return jsonify(result)
except Exception as e:
print(f"Error in handle_voice: {str(e)}")
return jsonify({'error': str(e)}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|