File size: 7,596 Bytes
7d18b6a
 
 
 
d4c64bc
777758b
7d18b6a
 
d4c64bc
 
 
 
 
7d18b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9577f3
777758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c64bc
 
 
 
 
 
 
 
 
777758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d18b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c64bc
777758b
7d18b6a
 
777758b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sounddevice as sd
import scipy.io.wavfile as wav
import numpy as np
from pydub import AudioSegment
import io
import tempfile
import os


# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

class AudioProcessor:
    def __init__(self):
        self.sample_rate = 16000
        self.channels = 1
        
    def process_audio(self, audio_file):
        """Process incoming audio file and convert to proper format"""
        with tempfile.TemporaryDirectory() as temp_dir:
            # Save incoming audio
            input_path = os.path.join(temp_dir, 'input.webm')
            audio_file.save(input_path)
            
            # Convert to WAV using pydub
            audio = AudioSegment.from_file(input_path)
            audio = audio.set_channels(self.channels)
            audio = audio.set_frame_rate(self.sample_rate)
            
            output_path = os.path.join(temp_dir, 'output.wav')
            audio.export(output_path, format='wav')
            
            # Read the processed audio file
            return output_path

    def record_audio(self, duration=5):
        """Record audio using sounddevice"""
        recording = sd.rec(
            int(duration * self.sample_rate),
            samplerate=self.sample_rate,
            channels=self.channels
        )
        sd.wait()
        return recording




try:
    import pyaudio
except ImportError:
    print("Warning: PyAudio not available, speech functionality will be limited")

# Initialize Flask app
app = Flask(__name__, static_folder='static')

# Load environment variables
load_dotenv()

# Groq API Configuration
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
MODEL = "llama3-70b-8192"

# Initialize speech recognition
recognizer = sr.Recognizer()

def init_speech_recognition():
    """Initialize speech recognition with fallback options"""
    try:
        recognizer = sr.Recognizer()
        return recognizer
    except Exception as e:
        logger.error(f"Failed to initialize speech recognition: {e}")
        return None
        
# Store conversation history
conversations = {}

def load_base_prompt():
    try:
        with open("base_prompt.txt", "r") as file:
            return file.read().strip()
    except FileNotFoundError:
        print("Error: base_prompt.txt file not found.")
        return "You are a helpful assistant for language learning."

# Load the base prompt
base_prompt = load_base_prompt()

def chat_with_groq(user_message, conversation_id=None):
    try:
        # Get conversation history or create new
        messages = conversations.get(conversation_id, [])
        if not messages:
            messages.append({"role": "system", "content": base_prompt})
        
        # Add user message
        messages.append({"role": "user", "content": user_message})
        
        # Get completion from Groq
        completion = client.chat.completions.create(
            model=MODEL,
            messages=messages,
            temperature=0.1,
            max_tokens=1024
        )
        
        # Add assistant's response to history
        assistant_message = completion.choices[0].message.content.strip()
        messages.append({"role": "assistant", "content": assistant_message})
        
        # Update conversation history
        if conversation_id:
            conversations[conversation_id] = messages
        
        return assistant_message
    except Exception as e:
        print(f"Error in chat_with_groq: {str(e)}")
        return f"I apologize, but I'm having trouble responding right now. Error: {str(e)}"

def text_to_speech(text):
    try:
        tts = gTTS(text=text, lang='en')
        audio_io = io.BytesIO()
        tts.write_to_fp(audio_io)
        audio_io.seek(0)
        return audio_io
    except Exception as e:
        print(f"Error in text_to_speech: {str(e)}")
        return None

def speech_to_text(audio_file):
    try:
        # Save the uploaded audio to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
            audio_file.save(temp_audio.name)
            
        # Use SpeechRecognition to convert speech to text
        with sr.AudioFile(temp_audio.name) as source:
            # Adjust recognition settings
            recognizer.dynamic_energy_threshold = True
            recognizer.energy_threshold = 4000
            
            # Record the entire audio file
            audio = recognizer.record(source)
            
            # Perform recognition with increased timeout
            text = recognizer.recognize_google(audio, language='en-US')
            return text
            
    except sr.UnknownValueError:
        return "Could not understand audio"
    except sr.RequestError as e:
        return f"Could not request results; {str(e)}"
    except Exception as e:
        print(f"Error in speech_to_text: {str(e)}")
        return None
    finally:
        # Clean up temporary file
        try:
            os.unlink(temp_audio.name)
        except:
            pass

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/api/chat', methods=['POST'])
def chat():
    try:
        data = request.get_json()
        user_message = data.get('message', '')
        conversation_id = data.get('conversation_id', str(uuid.uuid4()))
        
        if not user_message:
            return jsonify({'error': 'No message provided'}), 400
        
        # Get response from Groq
        response = chat_with_groq(user_message, conversation_id)
        
        # Generate voice response
        audio_io = text_to_speech(response)
        result = {
            'response': response,
            'conversation_id': conversation_id
        }
        
        if audio_io:
            audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
            result['voice_response'] = audio_base64
        
        return jsonify(result)
    
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/api/voice', methods=['POST'])
def handle_voice():
    try:
        if 'audio' not in request.files:
            return jsonify({'error': 'No audio file provided'}), 400
        
        audio_file = request.files['audio']
        conversation_id = request.form.get('conversation_id', str(uuid.uuid4()))
        
        # Process audio
        audio_processor = AudioProcessor()
        wav_path = audio_processor.process_audio(audio_file)
        
        # Perform speech recognition
        recognizer = sr.Recognizer()
        with sr.AudioFile(wav_path) as source:
            audio_data = recognizer.record(source)
            text = recognizer.recognize_google(audio_data)
        
        if not text:
            return jsonify({'error': 'Could not transcribe audio'}), 400
        
        # Get chatbot response
        response = chat_with_groq(text, conversation_id)
        
        # Generate voice response
        audio_io = text_to_speech(response)
        result = {
            'text': text,
            'response': response,
            'conversation_id': conversation_id
        }
        
        if audio_io:
            audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
            result['voice_response'] = audio_base64
        
        return jsonify(result)
        
    except Exception as e:
        print(f"Error in handle_voice: {str(e)}")
        return jsonify({'error': str(e)}), 400
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)