File size: 8,396 Bytes
d4c64bc
777758b
d4c64bc
 
777758b
a9577f3
d4c64bc
 
 
 
 
 
a9577f3
777758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c64bc
 
 
 
 
 
 
 
 
777758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c64bc
777758b
 
 
 
 
d4c64bc
 
 
 
a9577f3
d4c64bc
a9577f3
 
d4c64bc
777758b
 
d4c64bc
 
a9577f3
d4c64bc
 
 
a9577f3
d4c64bc
 
 
 
 
 
 
 
777758b
d4c64bc
 
 
777758b
 
 
 
d4c64bc
777758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c64bc
 
 
 
 
 
a9577f3
d4c64bc
a9577f3
777758b
 
d4c64bc
 
777758b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from flask import Flask, request, jsonify
import speech_recognition as sr
import io
import os
import tempfile
from pydub import AudioSegment
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)



try:
    import pyaudio
except ImportError:
    print("Warning: PyAudio not available, speech functionality will be limited")

# Initialize Flask app
app = Flask(__name__, static_folder='static')

# Load environment variables
load_dotenv()

# Groq API Configuration
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
MODEL = "llama3-70b-8192"

# Initialize speech recognition
recognizer = sr.Recognizer()

def init_speech_recognition():
    """Initialize speech recognition with fallback options"""
    try:
        recognizer = sr.Recognizer()
        return recognizer
    except Exception as e:
        logger.error(f"Failed to initialize speech recognition: {e}")
        return None
        
# Store conversation history
conversations = {}

def load_base_prompt():
    try:
        with open("base_prompt.txt", "r") as file:
            return file.read().strip()
    except FileNotFoundError:
        print("Error: base_prompt.txt file not found.")
        return "You are a helpful assistant for language learning."

# Load the base prompt
base_prompt = load_base_prompt()

def chat_with_groq(user_message, conversation_id=None):
    try:
        # Get conversation history or create new
        messages = conversations.get(conversation_id, [])
        if not messages:
            messages.append({"role": "system", "content": base_prompt})
        
        # Add user message
        messages.append({"role": "user", "content": user_message})
        
        # Get completion from Groq
        completion = client.chat.completions.create(
            model=MODEL,
            messages=messages,
            temperature=0.1,
            max_tokens=1024
        )
        
        # Add assistant's response to history
        assistant_message = completion.choices[0].message.content.strip()
        messages.append({"role": "assistant", "content": assistant_message})
        
        # Update conversation history
        if conversation_id:
            conversations[conversation_id] = messages
        
        return assistant_message
    except Exception as e:
        print(f"Error in chat_with_groq: {str(e)}")
        return f"I apologize, but I'm having trouble responding right now. Error: {str(e)}"

def text_to_speech(text):
    try:
        tts = gTTS(text=text, lang='en')
        audio_io = io.BytesIO()
        tts.write_to_fp(audio_io)
        audio_io.seek(0)
        return audio_io
    except Exception as e:
        print(f"Error in text_to_speech: {str(e)}")
        return None

def speech_to_text(audio_file):
    try:
        # Save the uploaded audio to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
            audio_file.save(temp_audio.name)
            
        # Use SpeechRecognition to convert speech to text
        with sr.AudioFile(temp_audio.name) as source:
            # Adjust recognition settings
            recognizer.dynamic_energy_threshold = True
            recognizer.energy_threshold = 4000
            
            # Record the entire audio file
            audio = recognizer.record(source)
            
            # Perform recognition with increased timeout
            text = recognizer.recognize_google(audio, language='en-US')
            return text
            
    except sr.UnknownValueError:
        return "Could not understand audio"
    except sr.RequestError as e:
        return f"Could not request results; {str(e)}"
    except Exception as e:
        print(f"Error in speech_to_text: {str(e)}")
        return None
    finally:
        # Clean up temporary file
        try:
            os.unlink(temp_audio.name)
        except:
            pass

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/api/chat', methods=['POST'])
def chat():
    try:
        data = request.get_json()
        user_message = data.get('message', '')
        conversation_id = data.get('conversation_id', str(uuid.uuid4()))
        
        if not user_message:
            return jsonify({'error': 'No message provided'}), 400
        
        # Get response from Groq
        response = chat_with_groq(user_message, conversation_id)
        
        # Generate voice response
        audio_io = text_to_speech(response)
        result = {
            'response': response,
            'conversation_id': conversation_id
        }
        
        if audio_io:
            audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
            result['voice_response'] = audio_base64
        
        return jsonify(result)
    
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/api/voice', methods=['POST'])
def handle_voice():
    try:
        if 'audio' not in request.files:
            logger.error("No audio file in request")
            return jsonify({'error': 'No audio file provided'}), 400
        
        audio_file = request.files['audio']
        conversation_id = request.form.get('conversation_id', str(uuid.uuid4()))
        
        # Log incoming request details
        logger.debug(f"Received audio file: {audio_file.filename}, "
                    f"Content type: {audio_file.content_type}")
        
        with tempfile.TemporaryDirectory() as temp_dir:
            # Save incoming audio
            input_path = os.path.join(temp_dir, 'input.webm')
            audio_file.save(input_path)
            logger.debug(f"Saved audio file to: {input_path}")
            
            try:
                # Convert audio using pydub
                audio = AudioSegment.from_file(input_path)
                output_path = os.path.join(temp_dir, 'output.wav')
                audio.export(output_path, format="wav", 
                           parameters=["-ac", "1", "-ar", "16000"])
                logger.debug("Audio conversion successful")
                
                # Initialize recognition if not already done
                if not hasattr(app, 'recognizer'):
                    app.recognizer = init_speech_recognition()
                
                if not app.recognizer:
                    return jsonify({'error': 'Speech recognition unavailable'}), 503
                
                # Perform speech recognition
                with sr.AudioFile(output_path) as source:
                    audio_data = app.recognizer.record(source)
                    text = app.recognizer.recognize_google(audio_data)
                    logger.debug(f"Speech recognition result: {text}")
                
                if not text:
                    return jsonify({'error': 'Could not transcribe audio'}), 400
                
                # Get chatbot response
                response = chat_with_groq(text, conversation_id)
                
                # Generate voice response
                audio_io = text_to_speech(response)
                result = {
                    'text': text,
                    'response': response,
                    'conversation_id': conversation_id
                }
                
                if audio_io:
                    audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
                    result['voice_response'] = audio_base64
                
                return jsonify(result)
                
            except sr.UnknownValueError:
                logger.error("Speech recognition could not understand audio")
                return jsonify({'error': 'Could not understand audio'}), 400
            except sr.RequestError as e:
                logger.error(f"Speech recognition service error: {e}")
                return jsonify({'error': 'Speech recognition service error'}), 503
            except Exception as e:
                logger.error(f"Audio processing error: {e}")
                return jsonify({'error': f'Error processing audio: {str(e)}'}), 400
                    
    except Exception as e:
        logger.error(f"General error in handle_voice: {e}")
        return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)