RAG_Chatbot / app.py
anshharora's picture
Upload 3 files
d950883 verified
raw
history blame
8.26 kB
import gradio as gr
from groq import Groq, RateLimitError
import pandas as pd
from PIL import Image
import pytesseract
import pdfplumber
from pdf2image import convert_from_path
import os
import time
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Set the path to Tesseract executable
pytesseract.pytesseract.tesseract_cmd = os.getenv("TESSERACT_CMD")
# Set the path to Poppler for PDF image extraction
poppler_path = os.getenv("POPPLER_PATH")
# Your Groq API key
YOUR_GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
client = Groq(api_key=YOUR_GROQ_API_KEY)
# Global variable to store extracted text
extracted_text = ""
def extract_text_from_image(image):
return pytesseract.image_to_string(image)
def remove_header_footer(image, header_height=3.9, footer_height=2.27):
width, height = image.size
header_height_pixels = int(header_height * 96) # Convert inches to pixels (assuming 96 DPI)
footer_height_pixels = int(footer_height * 96)
cropping_box = (0, header_height_pixels, width, height - footer_height_pixels)
return image.crop(cropping_box)
def handle_file(file, page_range=None):
global extracted_text
extracted_text = ""
if file is None:
return None, "No file uploaded"
file_name = file.name.lower()
if file_name.endswith(('png', 'jpg', 'jpeg')):
image = Image.open(file)
extracted_text = extract_text_from_image(image)
return image, extracted_text
elif file_name.endswith('pdf'):
text = ""
pdf_images = []
start_page = 1
end_page = None
if page_range:
try:
start_page, end_page = map(int, page_range.split('-'))
except ValueError:
start_page = int(page_range)
end_page = start_page
with pdfplumber.open(file) as pdf_file:
total_pages = len(pdf_file.pages)
end_page = end_page or total_pages
for page_number in range(start_page - 1, end_page):
page = pdf_file.pages[page_number]
page_text = page.extract_text() or ""
text += f"Page {page_number + 1}:\n{page_text}\n"
try:
page_images = convert_from_path(file.name, first_page=page_number + 1, last_page=page_number + 1, poppler_path=poppler_path)
page_images = [remove_header_footer(img) for img in page_images]
pdf_images.extend(page_images)
for img in page_images:
image_text = extract_text_from_image(img)
text += f"Page {page_number + 1} (Image):\n{image_text}\n"
except Exception as e:
text += f"Error processing images on page {page_number + 1}: {e}\n"
extracted_text = text
if pdf_images:
return pdf_images[0], extracted_text
else:
return None, extracted_text
elif file_name.endswith(('xls', 'xlsx')):
df = pd.read_excel(file)
extracted_text = df.to_string()
return None, extracted_text
elif file_name.endswith('csv'):
df = pd.read_csv(file)
extracted_text = df.to_string()
return None, extracted_text
else:
return None, "Unsupported file type"
def split_text(text, max_length=2000):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word) + 1 # +1 for the space or punctuation
if current_length + word_length > max_length:
chunks.append(" ".join(current_chunk))
current_chunk = [word]
current_length = word_length
else:
current_chunk.append(word)
current_length += word_length
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def is_rate_limited():
# Implement a method to check rate limit status if needed
return False
def chat_groq_sync(user_input, history, extracted_text):
retries = 5
while retries > 0:
rate_limit_status = is_rate_limited()
if rate_limit_status:
return f"{rate_limit_status} Please try again later."
messages = [{"role": "system", "content": "The following text is extracted from the uploaded file:\n" + extracted_text}]
for msg in history:
messages.append({"role": "user", "content": msg[0]})
messages.append({"role": "assistant", "content": msg[1]})
messages.append({"role": "user", "content": user_input})
try:
response = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1000,
temperature=0.4
)
response_content = response.choices[0].message.content
return response_content
except RateLimitError as e:
error_info = e.args[0] if e.args else {}
error_message = error_info.get('error', {}).get('message', '') if isinstance(error_info, dict) else str(error_info)
wait_time = 60
if 'try again in' in error_message:
try:
wait_time = float(error_message.split('try again in ')[-1].split('s')[0])
except ValueError:
pass
print(f"Rate limit error: {error_message}")
print(f"Retrying in {wait_time:.2f} seconds...")
retries -= 1
if retries > 0:
time.sleep(wait_time)
else:
return "Rate limit exceeded. Please try again later."
except Exception as e:
print(f"An unexpected error occurred: {e}")
return "An unexpected error occurred. Please try again later."
def update_chat(user_input, history):
global extracted_text
response = chat_groq_sync(user_input, history, extracted_text)
history.append((user_input, response))
return history, history, ""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# RAG Chatbot")
gr.Markdown("Check out the [GitHub](https://github.com/anshh-arora?tab=repositories) for more information.")
file = gr.File(label="Upload your file")
page_range = gr.Textbox(label="If the uploaded document is a PDF and has more than 10 pages, enter the page range (e.g., 1-3) or specific page number (e.g., 2):", lines=1, visible=False, interactive=True)
file_upload_button = gr.Button("Upload File")
image_display = gr.Image(label="Uploaded Image", visible=False)
extracted_text_display = gr.Textbox(label="Extracted Text", interactive=False)
with gr.Column(scale=3):
gr.Markdown("# Chat with your file")
history = gr.State([])
with gr.Column():
chatbot = gr.Chatbot(height=500, bubble_full_width=False)
user_input = gr.Textbox(placeholder="Enter Your Query", visible=True, scale=7, interactive=True)
clear_btn = gr.Button("Clear")
undo_btn = gr.Button("Undo")
user_input.submit(update_chat, [user_input, history], [chatbot, history, user_input])
clear_btn.click(lambda: ([], []), None, [chatbot, history])
undo_btn.click(lambda h: h[:-2], history, history)
def show_page_range_input(file):
if file and file.name.lower().endswith('pdf'):
with pdfplumber.open(file) as pdf_file:
if len(pdf_file.pages) > 10:
return gr.update(visible=True)
return gr.update(visible=False)
file.change(show_page_range_input, inputs=file, outputs=page_range)
file_upload_button.click(handle_file, [file, page_range], [image_display, extracted_text_display])
if __name__ == "__main__":
demo.launch(share=True)