File size: 3,299 Bytes
483af95 fe3aabc 483af95 fe3aabc 483af95 fe3aabc 483af95 fe3aabc 483af95 fe3aabc 483af95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import warnings
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
import pickle
from dotenv import load_dotenv
import gradio as gr
# Suppress TensorFlow and other warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
warnings.filterwarnings("ignore")
# Load environment variables
load_dotenv()
# Load the trained model and scaler
model = None
scaler = None
def load_model_and_scaler():
global model, scaler
try:
model_path = 'final_marks_predictor_model.h5'
scaler_path = 'scaler.pkl'
if not os.path.exists(model_path):
print(f"Model file not found: {model_path}")
return
if not os.path.exists(scaler_path):
print(f"Scaler file not found: {scaler_path}")
return
model = load_model(model_path)
with open(scaler_path, 'rb') as f:
scaler = pickle.load(f)
print("Model and scaler loaded successfully")
except Exception as e:
print(f"Error loading model or scaler: {e}")
# Load model and scaler when the application starts
load_model_and_scaler()
def predict_new_input(age, year1_marks, year2_marks, studytime, failures):
try:
feature_names = ['age', 'year1_marks', 'year2_marks', 'studytime', 'failures']
new_input_df = pd.DataFrame([[age, year1_marks, year2_marks, studytime, failures]], columns=feature_names)
if model is None or scaler is None:
return "Model or scaler is not loaded."
new_input_scaled = scaler.transform(new_input_df)
predicted_marks = model.predict(new_input_scaled, verbose=0)
return round(float(predicted_marks[0][0]), 2)
except Exception as e:
print(f"Error during prediction: {e}")
return "Error during prediction"
# Define Gradio Interface
def gradio_predict(age, year1_marks, year2_marks, studytime, failures):
return predict_new_input(age, year1_marks, year2_marks, studytime, failures)
if __name__ == '__main__':
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as interface:
with gr.Column():
gr.Markdown("## Student Performance Prediction")
gr.Markdown("Please fill in all the required fields and click 'Predict' to see your final predicted marks.")
# Create form fields
with gr.Row():
age = gr.Number(label="Age", interactive=True)
with gr.Row():
year1_marks = gr.Number(label="First Year Marks", interactive=True)
with gr.Row():
year2_marks = gr.Number(label="Second Year Marks", interactive=True)
with gr.Row():
studytime = gr.Number(label="Study Time (hours/week)", interactive=True)
with gr.Row():
failures = gr.Number(label="Number of Failures", interactive=True)
submit_button = gr.Button("Predict", variant="primary")
output = gr.Textbox(label="Predicted Final Marks", interactive=False)
# Button action
submit_button.click(gradio_predict, inputs=[age, year1_marks, year2_marks, studytime, failures], outputs=output)
interface.launch(share=False)
|