import os import warnings import numpy as np import pandas as pd from tensorflow.keras.models import load_model import pickle from dotenv import load_dotenv import gradio as gr # Suppress TensorFlow and other warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' warnings.filterwarnings("ignore") # Load environment variables load_dotenv() # Load the trained model and scaler model = None scaler = None def load_model_and_scaler(): global model, scaler try: model_path = 'final_marks_predictor_model.h5' scaler_path = 'scaler.pkl' if not os.path.exists(model_path): print(f"Model file not found: {model_path}") return if not os.path.exists(scaler_path): print(f"Scaler file not found: {scaler_path}") return model = load_model(model_path) with open(scaler_path, 'rb') as f: scaler = pickle.load(f) print("Model and scaler loaded successfully") except Exception as e: print(f"Error loading model or scaler: {e}") # Load model and scaler when the application starts load_model_and_scaler() def predict_new_input(age, year1_marks, year2_marks, studytime, failures): try: feature_names = ['age', 'year1_marks', 'year2_marks', 'studytime', 'failures'] new_input_df = pd.DataFrame([[age, year1_marks, year2_marks, studytime, failures]], columns=feature_names) if model is None or scaler is None: return "Model or scaler is not loaded." new_input_scaled = scaler.transform(new_input_df) predicted_marks = model.predict(new_input_scaled, verbose=0) return round(float(predicted_marks[0][0]), 2) except Exception as e: print(f"Error during prediction: {e}") return "Error during prediction" # Define Gradio Interface def gradio_predict(age, year1_marks, year2_marks, studytime, failures): return predict_new_input(age, year1_marks, year2_marks, studytime, failures) if __name__ == '__main__': # Create the Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as interface: with gr.Column(): gr.Markdown("## Student Performance Prediction") gr.Markdown("Please fill in all the required fields and click 'Predict' to see your final predicted marks.") # Create form fields with gr.Row(): age = gr.Number(label="Age", interactive=True) with gr.Row(): year1_marks = gr.Number(label="First Year Marks", interactive=True) with gr.Row(): year2_marks = gr.Number(label="Second Year Marks", interactive=True) with gr.Row(): studytime = gr.Number(label="Study Time (hours/week)", interactive=True) with gr.Row(): failures = gr.Number(label="Number of Failures", interactive=True) submit_button = gr.Button("Predict", variant="primary") output = gr.Textbox(label="Predicted Final Marks", interactive=False) # Button action submit_button.click(gradio_predict, inputs=[age, year1_marks, year2_marks, studytime, failures], outputs=output) interface.launch(share=False)