from pathlib import Path import cv2 import sys import gradio as gr import os import numpy as np from gradio_utils import * from transformers import CLIPTokenizer def image_mod(image): return image.rotate(45) sys.path.insert(1, os.path.join(sys.path[0], '..')) NUM_POINTS = 3 NUM_FRAMES = 16 LARGE_BOX_SIZE = 176 data = {} tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32') def get_token_number(prompt, word): all_tokens = tokenizer(prompt).input_ids word_tokens = tokenizer(word).input_ids print(all_tokens, word_tokens, word) return all_tokens.index(word_tokens[1]) # Word_tokens start with cls def overlay_mask(img, mask): mask_resized = cv2.resize(mask, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST) # Create a 3-channel version of the mask mask_3ch = cv2.cvtColor(mask_resized, cv2.COLOR_GRAY2BGR) # Set the opacity level opacity = 0.25 # Adjust as needed alpha_channel = np.ones_like(mask_resized) * 255 # Start with a fully opaque alpha channel # Set black pixels to be completely transparent alpha_channel[mask_resized < 5] = 0 # Set the opacity level for non-black pixels opacity = 0.75 # Adjust this value as needed (0.0 to 1.0) alpha_channel[mask_resized != 0] = int(255 * opacity) # Create a 4-channel image (BGR + Alpha) b, g, r = cv2.split(img) rgba = [b, g, r, alpha_channel] result = cv2.merge(rgba, 4) # Overlay the mask on the image overlay = cv2.addWeighted(mask_3ch, opacity, img, 1 - opacity, 0) return overlay def fetch_proper_img(prompt, word, frame_num, diffusion_step, layer_num=0): frame_num = frame_num - 1 if layer_num is None: layer_num = 0 else: layer_num = 100 if layer_num == 3 else layer_num video_file_name = f"./data/videos/{prompt.replace(' ', '_')}/video/frame_{frame_num:04d}.png" img = cv2.imread(video_file_name) if word is None: overlaid_image = img else: mask_file_name = f'./data/final_masks/attention_probs_{prompt}/frame_{frame_num}_layer_{layer_num}_diffusionstep_{diffusion_step}_token_{get_token_number(prompt, word)}.png' mask = cv2.imread(mask_file_name, cv2.IMREAD_GRAYSCALE) overlaid_image = overlay_mask(img, mask) print(mask_file_name) return img, overlaid_image def fetch_proper_img_and_change_prompt(prompt, word, frame_num, diffusion_step, layer_num=0): radio = change_text_prompt(prompt) video_1, video_2 = fetch_proper_img(prompt, word, frame_num, diffusion_step, layer_num) return [video_1, video_2, radio] css = """ .word-btn { width: fit-content; padding: 3px; } .word-btns-container { flex-direction: row; } """ registry = { 'spider': 'mask_1', 'descending': 'mask_2', } data_path = Path( 'data' ) available_prompts = ['a dog and a cat sitting','A fish swimming in the water', 'A spider descending from its web', 'An astronaut riding a horse'] with gr.Blocks(css=css) as demo: with gr.Row(): video_1 = gr.Image(label="Image", ) # video_1 = gr.Image(label="Image", width=256, height=256) video_2 = gr.Image(label="Image with Attention Mask", ) # video_2 = gr.Image(label="Image with Attention Mask", width=256, height=256) def change_text_prompt(text): return gr.Radio(text.strip().split(' '), value=None, label='Choose a word to visualize its attention mask.') text = 'a dog and a cat sitting' gr.Markdown(""" ## Visualizing Attention Masks * Select a prompt from the drop down * Click on "Get words" to get the words in the prompt * Select a radio button from the words to visualize the attention mask * Play around with the index of diffusion steps, layers to visualize different masks """) with gr.Group("Video Selection"): txt_1 = gr.Dropdown(choices=available_prompts, label="Video Prompt", value=available_prompts[0]) submit_btn = gr.Button('Get words') with gr.Group('Word Selection'): radio = gr.Radio(text.split(' '), value=None, label='Choose a word to visualize its attention mask.') range_slider = gr.Slider(1, 16, 1, step=2, label='Frame of the generated video to visualize the attention mask.') diffusion_slider = gr.Slider(0, 35, 0, step=5, label='Index of diffusion steps.') layer_num_slider = gr.Slider(0, 6, 0, step=1, label='Layer number for attention mask.') radio.change(fetch_proper_img, inputs=[txt_1, radio, range_slider, diffusion_slider, layer_num_slider], outputs=[video_1, video_2]) range_slider.change(fetch_proper_img, inputs=[txt_1, radio, range_slider, diffusion_slider, layer_num_slider], outputs=[video_1, video_2]) diffusion_slider.change(fetch_proper_img, inputs=[txt_1, radio, range_slider, diffusion_slider, layer_num_slider], outputs=[video_1, video_2]) layer_num_slider.change(fetch_proper_img, inputs=[txt_1, radio, range_slider, diffusion_slider, layer_num_slider], outputs=[video_1, video_2]) submit_btn.click(change_text_prompt, inputs=[txt_1], outputs=[radio]) if __name__ == "__main__": demo.launch(server_name='0.0.0.0')