File size: 7,131 Bytes
5fa685d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import os
from datetime import datetime

import dotenv
import lancedb
from datasets import load_dataset
from fasthtml.common import *  # noqa
from huggingface_hub import login, whoami
from rerankers import Reranker

dotenv.load_dotenv()
login(token=os.environ.get("HF_TOKEN"))

hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
HF_REPO_ID_TXT = f"{hf_user}/zotero-answer-ai-texts"

abstract_ds = load_dataset(HF_REPO_ID_TXT, "abstracts")["train"]
article_ds = load_dataset(HF_REPO_ID_TXT, "articles")["train"]

ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")


uri = "data/zotero-fts"
db = lancedb.connect(uri)

id2abstract = {example["arxiv_id"]: example["abstract"] for example in abstract_ds}
id2content = {example["arxiv_id"]: example["contents"] for example in article_ds}
id2title = {example["arxiv_id"]: example["title"] for example in article_ds}

arxiv_ids = set(list(id2abstract.keys()))

data = []
for arxiv_id in arxiv_ids:
    abstract = id2abstract[arxiv_id]
    title = id2title[arxiv_id]
    full_text = title

    for item in id2content[arxiv_id]:
        full_text += f"{item['title']}\n\n{item['content']}"

    data.append(
        {
            "arxiv_id": arxiv_id,
            "title": title,
            "abstract": abstract,
            "full_text": full_text,
        }
    )


table = db.create_table("articles", data=data, mode="overwrite")

table.create_fts_index("full_text", replace=True)


# format results ----
def _format_results(results):
    ret = []

    for result in results:
        arx_id = result["arxiv_id"]
        title = result["title"]
        abstract = result["abstract"]

        if "Abstract\n\n" in abstract:
            abstract = abstract.split("Abstract\n\n")[-1]

        this_ex = {
            "title": title,
            "url": f"https://arxiv.org/abs/{arx_id}",
            "abstract": abstract,
        }

        ret.append(this_ex)

    return ret


def retrieve_and_rerank(query, k=5):
    # retrieve ---
    n_fetch = 25

    retrieved = (
        table.search(query, vector_column_name="", query_type="fts")
        .limit(n_fetch)
        .select(["arxiv_id", "title", "abstract"])
        .to_list()
    )

    # re-rank
    docs = [f"{item['title']} {item['abstract']}" for item in retrieved]
    results = ranker.rank(query=query, docs=docs)

    ranked_doc_ids = []
    for result in results[:k]:
        ranked_doc_ids.append(result.doc_id)

    final_results = [retrieved[idx] for idx in ranked_doc_ids]
    final_results = _format_results(final_results)
    return final_results


###########################################################################
# FastHTML app -----
###########################################################################

style = Style("""
        :root {
            color-scheme: dark;
        }
        body {
            max-width: 1200px;
            margin: 0 auto;
            padding: 20px;
            line-height: 1.6;
        }
        #query {
            width: 100%;
            margin-bottom: 1rem;
        }
        #search-form button {
            width: 100%;
        }
        #search-results, #log-entries {
            margin-top: 2rem;
        }
        .log-entry {
            border: 1px solid #ccc;
            padding: 10px;
            margin-bottom: 10px;
        }
        .log-entry pre {
            white-space: pre-wrap;
            word-wrap: break-word;
        }
        .htmx-indicator {
            display: none;
        }
        .htmx-request .htmx-indicator {
            display: inline-block;
        }
        .spinner {
            display: inline-block;
            width: 2.5em;
            height: 2.5em;
            border: 0.3em solid rgba(255,255,255,.3);
            border-radius: 50%;
            border-top-color: #fff;
            animation: spin 1s ease-in-out infinite;
            margin-left: 10px;
            vertical-align: middle;
        }
        @keyframes spin {
            to { transform: rotate(360deg); }
        }
        .searching-text {
            font-size: 1.2em;
            font-weight: bold;
            color: #fff;
            margin-right: 10px;
            vertical-align: middle;
        }
    """)

# get the fast app and route
app, rt = fast_app(hdrs=(style,))

# Initialize a database to store search logs --
db = database("log_data/search_logs.db")
search_logs = db.t.search_logs

if search_logs not in db.t:
    search_logs.create(
        id=int,
        timestamp=str,
        query=str,
        results=str,
        pk="id",
    )

SearchLog = search_logs.dataclass()


def insert_log_entry(log_entry):
    "Insert a log entry into the database"
    return search_logs.insert(
        SearchLog(
            timestamp=log_entry["timestamp"].isoformat(),
            query=log_entry["query"],
            results=json.dumps(log_entry["results"]),
        )
    )


@rt("/")
async def get():
    query_form = Form(
        Textarea(id="query", name="query", placeholder="Enter your query..."),
        Button("Submit", type="submit"),
        Div(
            Span("Searching...", cls="searching-text htmx-indicator"),
            Span(cls="spinner htmx-indicator"),
            cls="indicator-container",
        ),
        id="search-form",
        hx_post="/search",
        hx_target="#search-results",
        hx_indicator=".indicator-container",
    )

    results_div = Div(Div(id="search-results", cls="results-container"))

    view_logs_link = A("View Logs", href="/logs", cls="view-logs-link")

    return Titled(
        "Zotero Search", Div(query_form, results_div, view_logs_link, cls="container")
    )


def SearchResult(result):
    "Custom component for displaying a search result"
    return Card(
        H4(A(result["title"], href=result["url"], target="_blank")),
        P(result["abstract"]),
        footer=A("Read more →", href=result["url"], target="_blank"),
    )


def log_query_and_results(query, results):
    log_entry = {
        "timestamp": datetime.now(),
        "query": query,
        "results": [{"title": r["title"], "url": r["url"]} for r in results],
    }
    insert_log_entry(log_entry)


@rt("/search")
async def post(query: str):
    results = retrieve_and_rerank(query)
    log_query_and_results(query, results)

    return Div(*[SearchResult(r) for r in results], id="search-results")


def LogEntry(entry):
    return Div(
        H4(f"Query: {entry.query}"),
        P(f"Timestamp: {entry.timestamp}"),
        H5("Results:"),
        Pre(entry.results),
        cls="log-entry",
    )


@rt("/logs")
async def get():
    logs = search_logs(order_by="-id", limit=50)  # Get the latest 50 logs
    log_entries = [LogEntry(log) for log in logs]
    return Titled(
        "Logs",
        Div(
            H2("Recent Search Logs"),
            Div(*log_entries, id="log-entries"),
            A("Back to Search", href="/", cls="back-link"),
            cls="container",
        ),
    )


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))

    # run_uv()