Spaces:
Paused
Paused
Commit
路
04903ac
1
Parent(s):
d86605b
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
import multiprocessing
|
6 |
+
import chromadb
|
7 |
+
import hashlib
|
8 |
+
|
9 |
+
# Carga el modelo
|
10 |
+
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
|
11 |
+
|
12 |
+
# Crea el cliente ChromaDB
|
13 |
+
chroma_client = chromadb.Client()
|
14 |
+
collection = chroma_client.create_collection(name="my_collection")
|
15 |
+
|
16 |
+
def generate_hash(text):
|
17 |
+
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
18 |
+
|
19 |
+
# Funci贸n para obtener embeddings del modelo
|
20 |
+
def get_embeddings(sentences):
|
21 |
+
embeddings = []
|
22 |
+
for sentence in sentences:
|
23 |
+
sentence_hash = generate_hash(sentence)
|
24 |
+
# Verificar si el embedding ya est谩 en la base de datos
|
25 |
+
results = collection.query(query_texts=[sentence], n_results=1)
|
26 |
+
if results:
|
27 |
+
embeddings.append(np.array(results[0]['embedding']))
|
28 |
+
else:
|
29 |
+
# Si no est谩 en la base de datos, calcula el embedding y lo almacena
|
30 |
+
embedding = model.encode(sentence, show_progress_bar=False)
|
31 |
+
collection.add(
|
32 |
+
embeddings=[embedding.tolist()],
|
33 |
+
documents=[sentence],
|
34 |
+
metadatas=[{"source": "my_source"}],
|
35 |
+
ids=[sentence_hash] # Usa el hash como ID
|
36 |
+
)
|
37 |
+
embeddings.append(embedding)
|
38 |
+
return np.array(embeddings)
|
39 |
+
|
40 |
+
# Funci贸n para comparar las sentencias
|
41 |
+
def calculate_similarity(args):
|
42 |
+
source_embedding, compare_embedding = args
|
43 |
+
return cosine_similarity(source_embedding.reshape(1, -1), compare_embedding.reshape(1, -1))[0][0]
|
44 |
+
|
45 |
+
def compare(source_sentence, compare_sentences):
|
46 |
+
compare_list = compare_sentences.split("--")
|
47 |
+
|
48 |
+
# Obtiene todos los embeddings a la vez para acelerar el proceso
|
49 |
+
all_sentences = [source_sentence] + compare_list
|
50 |
+
all_embeddings = get_embeddings(all_sentences)
|
51 |
+
|
52 |
+
# Prepara los datos para el multiprocesamiento
|
53 |
+
source_embedding = all_embeddings[0]
|
54 |
+
data_for_multiprocessing = [(source_embedding, emb) for emb in all_embeddings[1:]]
|
55 |
+
|
56 |
+
# Utiliza un pool de procesos para calcular las similitudes en paralelo
|
57 |
+
with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:
|
58 |
+
similarities = pool.map(calculate_similarity, data_for_multiprocessing)
|
59 |
+
|
60 |
+
return ', '.join([str(sim) for sim in similarities])
|
61 |
+
|
62 |
+
# Define las interfaces de entrada y salida de Gradio
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=compare,
|
65 |
+
inputs=["text", "text"],
|
66 |
+
outputs="text",
|
67 |
+
live=False
|
68 |
+
)
|
69 |
+
|
70 |
+
# Inicia la interfaz de Gradio
|
71 |
+
iface.launch()
|