Spaces:
Paused
Paused
Commit
路
cb8f228
1
Parent(s):
7c17d6b
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,50 @@
|
|
1 |
-
import gradio as gr
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
import chromadb
|
7 |
-
import hashlib
|
8 |
-
|
9 |
-
# Carga el modelo
|
10 |
-
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
|
11 |
-
|
12 |
-
# Crea el cliente ChromaDB
|
13 |
-
chroma_client = chromadb.Client()
|
14 |
-
collection = chroma_client.create_collection(name="my_collection")
|
15 |
-
|
16 |
-
def generate_hash(text):
|
17 |
-
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
18 |
-
|
19 |
-
# Funci贸n para obtener embeddings del modelo
|
20 |
-
import sqlite3
|
21 |
import gradio as gr
|
22 |
-
from sentence_transformers import SentenceTransformer
|
23 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
24 |
-
import numpy as np
|
25 |
-
import multiprocessing
|
26 |
|
27 |
-
# Inicializa
|
28 |
-
|
29 |
-
c = conn.cursor()
|
30 |
-
c.execute('''CREATE TABLE IF NOT EXISTS embeddings
|
31 |
-
(sentence TEXT PRIMARY KEY, embedding BLOB)''')
|
32 |
-
conn.commit()
|
33 |
|
34 |
-
#
|
35 |
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
|
|
|
36 |
|
37 |
# Funci贸n para obtener embeddings del modelo
|
38 |
def get_embeddings(sentences):
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
for sentence in sentences:
|
43 |
-
c.execute('SELECT embedding FROM embeddings WHERE sentence=?', (sentence,))
|
44 |
-
result = c.fetchone()
|
45 |
-
if result:
|
46 |
-
embeddings.append(np.frombuffer(result[0], dtype=np.float32))
|
47 |
-
else:
|
48 |
-
new_sentences.append(sentence)
|
49 |
-
|
50 |
-
# Si hay nuevas sentencias, obt茅n los embeddings y almac茅nalos en la base de datos
|
51 |
-
if new_sentences:
|
52 |
-
new_embeddings = model.encode(new_sentences, show_progress_bar=False)
|
53 |
-
embeddings.extend(new_embeddings)
|
54 |
-
c.executemany('INSERT INTO embeddings VALUES (?,?)',
|
55 |
-
[(sent, emb.tobytes()) for sent, emb in zip(new_sentences, new_embeddings)])
|
56 |
-
conn.commit()
|
57 |
-
|
58 |
-
return embeddings
|
59 |
|
60 |
-
# Funci贸n para
|
61 |
-
def calculate_similarity(
|
62 |
-
source_embedding, compare_embedding =
|
63 |
-
return cosine_similarity(source_embedding
|
64 |
|
|
|
65 |
def compare(source_sentence, compare_sentences):
|
66 |
compare_list = compare_sentences.split("--")
|
67 |
|
68 |
-
#
|
69 |
all_sentences = [source_sentence] + compare_list
|
70 |
all_embeddings = get_embeddings(all_sentences)
|
71 |
|
72 |
-
#
|
73 |
source_embedding = all_embeddings[0]
|
74 |
-
|
75 |
-
|
76 |
-
# Utiliza un pool de procesos para calcular las similitudes en paralelo
|
77 |
-
with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:
|
78 |
-
similarities = pool.map(calculate_similarity, data_for_multiprocessing)
|
79 |
|
80 |
return ', '.join([str(sim) for sim in similarities])
|
81 |
|
82 |
-
#
|
83 |
iface = gr.Interface(
|
84 |
-
fn=compare,
|
85 |
-
inputs=[
|
86 |
-
|
87 |
-
|
|
|
88 |
)
|
89 |
|
90 |
-
#
|
91 |
iface.launch()
|
92 |
-
conn.close()
|
93 |
|
|
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
import numpy as np
|
4 |
+
from accelerate import Accelerator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Inicializa el Accelerator
|
8 |
+
accelerator = Accelerator()
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Cargar el modelo y colocarlo en el dispositivo adecuado
|
11 |
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
|
12 |
+
model, _ = accelerator.prepare(model, model)
|
13 |
|
14 |
# Funci贸n para obtener embeddings del modelo
|
15 |
def get_embeddings(sentences):
|
16 |
+
# Preparar los datos para ejecuci贸n acelerada
|
17 |
+
sentences = accelerator.prepare(sentences)
|
18 |
+
return model.encode(sentences, show_progress_bar=False, convert_to_tensor=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Funci贸n para calcular la similitud
|
21 |
+
def calculate_similarity(arguments):
|
22 |
+
source_embedding, compare_embedding = arguments
|
23 |
+
return cosine_similarity([source_embedding], [compare_embedding])[0][0]
|
24 |
|
25 |
+
# Funci贸n para comparar oraciones
|
26 |
def compare(source_sentence, compare_sentences):
|
27 |
compare_list = compare_sentences.split("--")
|
28 |
|
29 |
+
# Obtener todos los embeddings de una vez para acelerar el proceso
|
30 |
all_sentences = [source_sentence] + compare_list
|
31 |
all_embeddings = get_embeddings(all_sentences)
|
32 |
|
33 |
+
# No se necesita multiprocesamiento si usamos Accelerate ya que esto se maneja internamente
|
34 |
source_embedding = all_embeddings[0]
|
35 |
+
similarities = [calculate_similarity((source_embedding, emb)) for emb in all_embeddings[1:]]
|
|
|
|
|
|
|
|
|
36 |
|
37 |
return ', '.join([str(sim) for sim in similarities])
|
38 |
|
39 |
+
# Definir las interfaces de entrada y salida para Gradio
|
40 |
iface = gr.Interface(
|
41 |
+
fn=compare,
|
42 |
+
inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter source sentence here..."),
|
43 |
+
gr.inputs.Textbox(lines=10, placeholder="Enter sentences to compare, separated by '--'...")],
|
44 |
+
outputs=gr.outputs.Textbox(),
|
45 |
+
live=False
|
46 |
)
|
47 |
|
48 |
+
# Iniciar la interfaz de Gradio
|
49 |
iface.launch()
|
|
|
50 |
|