Spaces:
Runtime error
Runtime error
File size: 1,009 Bytes
314e98e a8efbc5 314e98e a8efbc5 314e98e a8efbc5 314e98e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Carga el modelo
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
# Función para obtener embeddings del modelo
def get_embeddings(sentences):
embeddings = model.encode(sentences, show_progress_bar=False)
return np.array(embeddings)
# Función para comparar las sentencias
def compare(source_sentence, compare_sentence):
# Calcula la similitud
embeddings = get_embeddings([source_sentence, compare_sentence])
similarity = float(cosine_similarity(embeddings[0].reshape(1, -1), embeddings[1].reshape(1, -1))[0][0]) # Convert the numpy.float32 to Python float
return similarity
# Define las interfaces de entrada y salida de Gradio
iface = gr.Interface(
fn=compare,
inputs=["text", "text"],
outputs="number",
live=True
)
# Inicia la interfaz de Gradio
iface.launch()
|