File size: 1,189 Bytes
baee762
2c7a1e2
baee762
 
 
 
 
2c7a1e2
baee762
2c7a1e2
baee762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7a1e2
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr

# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("anto18671/lumenspark", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("anto18671/lumenspark", trust_remote_code=True)

def generate_text(input_text):
    # Tokenize input text
    encoded_input = tokenizer(input_text, return_tensors='pt')

    # Generate text using the model
    output = model.generate(
        input_ids=encoded_input["input_ids"],
        attention_mask=encoded_input["attention_mask"],
        max_length=100,
        min_length=20,
        temperature=0.6,
        top_k=50,
        top_p=0.9,
        repetition_penalty=1.1,
        do_sample=True
    )

    # Decode the generated text
    decoded_text = tokenizer.decode(output[0], skip_special_tokens=True)
    return decoded_text

# Set up Gradio interface
interface = gr.Interface(
    fn=generate_text,
    inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
    outputs="text",
    title="Text Generator",
    description="Generate text using the Lumenspark model."
)

# Launch the interface
interface.launch()