antonioneto11 commited on
Commit
79246a2
1 Parent(s): aeb75ab

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -28
app.py DELETED
@@ -1,28 +0,0 @@
1
- import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
-
4
- # Initialize the tokenizer and model from Hugging Face's transformers
5
- tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat")
6
- model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
7
-
8
- def generate_answer(user_input):
9
- our_system_prompt = ("\nYou are a helpful, respectful and honest assistant. English your note and knead it to a narrative, fact-wise, and sure. Anything out of the known or virtuous, decked kindly and in skill.\n\n")
10
- prompt = f"{our_system_prompt}{user_input}\n\n###\n"
11
-
12
- #
13
- inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
14
- output = model.generate(**inputs, max_length=512, temperature=0.7, num_return_sequences=1)
15
- predicted_text = tokenizer.decode(output[0], skip_special_tokens=True)
16
-
17
- return predicted_text
18
-
19
- # Gradio app interface
20
- iface = gr.Interface(
21
- fn=generate_answer,
22
- inputs=gr.Textbox(lines=7, placeholder="Enter your finance question here..."),
23
- outputs="text",
24
- title="Finance Expert with AdaptLLM",
25
- description="Get your finance questions answered confidently and clearly. Whether it's the realm of trading, financial technology, or business savvy you're intrigued by, cast your text here to press a layout of custom, company, or policy lay of our NLP response. The jibe is to an affected, content-cashed ear in line with today's AdaptLLM/finance-chat discourse."
26
- )
27
-
28
- iface.launch(share=True)