Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdfplumber
|
2 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def load_model_and_tokenizer(model_name="dbmdz/bert-large-cased-finetuned-conll03-english"):
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
9 |
+
return tokenizer, model
|
10 |
+
|
11 |
+
def named_entity_recognition(text, tokenizer, model):
|
12 |
+
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
14 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
15 |
+
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
20 |
+
entities = [(token, model.config.id2label[prediction.item()]) for token, prediction in zip(tokens, predictions[0])]
|
21 |
+
|
22 |
+
return [entity for entity in entities if entity[1] != 'O']
|
23 |
+
|
24 |
+
def extract_text_from_pdf(pdf):
|
25 |
+
text = ""
|
26 |
+
with pdfplumber.open(pdf) as pdf_file:
|
27 |
+
for page in pdf_file.pages:
|
28 |
+
page_text = page.extract_text()
|
29 |
+
if page_text:
|
30 |
+
text += page_text + " "
|
31 |
+
return text.strip()
|
32 |
+
|
33 |
+
def process_pdf(pdf):
|
34 |
+
text = extract_text_from_pdf(pdf)
|
35 |
+
|
36 |
+
if not text:
|
37 |
+
return "No text found in the PDF."
|
38 |
+
|
39 |
+
entities = named_entity_recognition(text, tokenizer, model)
|
40 |
+
return entities if entities else "No named entities found."
|
41 |
+
|
42 |
+
tokenizer, model = load_model_and_tokenizer()
|
43 |
+
|
44 |
+
gr.Interface(
|
45 |
+
fn=process_pdf,
|
46 |
+
inputs=gr.File(label="Upload PDF"),
|
47 |
+
outputs="text",
|
48 |
+
title="Named Entity Recognition from PDF",
|
49 |
+
description="Upload a PDF file to extract text and perform Named Entity Recognition using a pre-trained BERT model."
|
50 |
+
).launch()
|