Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection | |
from PIL import Image, ImageDraw | |
import gradio as gr | |
checkpoint = "google/owlvit-base-patch32" | |
model = AutoModelForZeroShotObjectDetection.from_pretrained(checkpoint) | |
processor = AutoProcessor.from_pretrained(checkpoint) | |
def detect_objects(image, text_queries): | |
if isinstance(image, str): | |
image = Image.open(image) | |
inputs = processor(images=image, text=text_queries, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, threshold=0.1, target_sizes=target_sizes)[0] | |
draw = ImageDraw.Draw(image) | |
scores = results["scores"].tolist() | |
labels = results["labels"].tolist() | |
boxes = results["boxes"].tolist() | |
for box, score, label in zip(boxes, scores, labels): | |
xmin, ymin, xmax, ymax = box | |
draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) | |
draw.text((xmin, ymin), f"{text_queries[label]}: {round(score, 2)}", fill="black") | |
return image | |
inputs = [ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Textbox(label="Text Queries (comma-separated)") | |
] | |
output = gr.Image(type="pil", label="Output Image") | |
gr.Interface( | |
fn=detect_objects, | |
inputs=inputs, | |
outputs=output, | |
title="Zero-Shot Object Detection", | |
description="Detect objects in an image using zero-shot object detection.", | |
).launch() | |