Spaces:
Runtime error
Runtime error
from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio | |
from preprocess.humanparsing.run_parsing import Parsing | |
from preprocess.openpose.run_openpose import OpenPose | |
import os | |
import sys | |
import time | |
from glob import glob | |
from os.path import join as opj | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import spaces | |
print(torch.cuda.is_available(), torch.cuda.device_count()) | |
from cldm.model import create_model | |
from cldm.plms_hacked import PLMSSampler | |
from utils_stableviton import get_mask_location, get_batch, tensor2img, center_crop | |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
IMG_H = 1024 | |
IMG_W = 768 | |
openpose_model_hd = OpenPose(0) | |
openpose_model_hd.preprocessor.body_estimation.model.to('cuda') | |
parsing_model_hd = Parsing(0) | |
densepose_model_hd = DensePose4Gradio( | |
cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml', | |
model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl', | |
) | |
category_dict = ['upperbody', 'lowerbody', 'dress'] | |
category_dict_utils = ['upper_body', 'lower_body', 'dresses'] | |
# #### model init >>>> | |
config = OmegaConf.load("./configs/VITON.yaml") | |
config.model.params.img_H = IMG_H | |
config.model.params.img_W = IMG_W | |
params = config.model.params | |
model = create_model(config_path=None, config=config) | |
model.load_state_dict(torch.load("./checkpoints/eternal_1024.ckpt", map_location="cpu")["state_dict"]) | |
model = model.cuda() | |
model.eval() | |
sampler = PLMSSampler(model) | |
model2 = create_model(config_path=None, config=config) | |
model2.load_state_dict(torch.load("./checkpoints/VITONHD_1024.ckpt", map_location="cpu")["state_dict"]) | |
model2 = model.cuda() | |
model2.eval() | |
sampler2 = PLMSSampler(model2) | |
# #### model init <<<< | |
def stable_viton_model_hd( | |
batch, | |
n_steps, | |
): | |
z, cond = model.get_input(batch, params.first_stage_key) | |
z = z | |
bs = z.shape[0] | |
c_crossattn = cond["c_crossattn"][0][:bs] | |
if c_crossattn.ndim == 4: | |
c_crossattn = model.get_learned_conditioning(c_crossattn) | |
cond["c_crossattn"] = [c_crossattn] | |
uc_cross = model.get_unconditional_conditioning(bs) | |
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]} | |
uc_full["first_stage_cond"] = cond["first_stage_cond"] | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.cuda() | |
sampler.model.batch = batch | |
ts = torch.full((1,), 999, device=z.device, dtype=torch.long) | |
start_code = model.q_sample(z, ts) | |
torch.cuda.empty_cache() | |
output, _, _ = sampler.sample( | |
n_steps, | |
bs, | |
(4, IMG_H//8, IMG_W//8), | |
cond, | |
x_T=start_code, | |
verbose=False, | |
eta=0.0, | |
unconditional_conditioning=uc_full, | |
) | |
output = model.decode_first_stage(output) | |
output = tensor2img(output) | |
pil_output = Image.fromarray(output) | |
return pil_output | |
def stable_viton_model_hd2( | |
batch, | |
n_steps, | |
): | |
z, cond = model2.get_input(batch, params.first_stage_key) | |
z = z | |
bs = z.shape[0] | |
c_crossattn = cond["c_crossattn"][0][:bs] | |
if c_crossattn.ndim == 4: | |
c_crossattn = model2.get_learned_conditioning(c_crossattn) | |
cond["c_crossattn"] = [c_crossattn] | |
uc_cross = model2.get_unconditional_conditioning(bs) | |
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]} | |
uc_full["first_stage_cond"] = cond["first_stage_cond"] | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.cuda() | |
sampler2.model.batch = batch | |
ts = torch.full((1,), 999, device=z.device, dtype=torch.long) | |
start_code = model2.q_sample(z, ts) | |
torch.cuda.empty_cache() | |
output, _, _ = sampler2.sample( | |
n_steps, | |
bs, | |
(4, IMG_H//8, IMG_W//8), | |
cond, | |
x_T=start_code, | |
verbose=False, | |
eta=0.0, | |
unconditional_conditioning=uc_full, | |
) | |
output = model2.decode_first_stage(output) | |
output = tensor2img(output) | |
pil_output = Image.fromarray(output) | |
return pil_output | |
def process_hd(vton_img, garm_img, n_steps, is_custom): | |
model_type = 'hd' | |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress | |
stt = time.time() | |
print('load images... ', end='') | |
# garm_img = Image.open(garm_img).resize((IMG_W, IMG_H)) | |
# vton_img = Image.open(vton_img).resize((IMG_W, IMG_H)) | |
garm_img = Image.open(garm_img) | |
vton_img = Image.open(vton_img) | |
vton_img = center_crop(vton_img) | |
garm_img = garm_img.resize((IMG_W, IMG_H)) | |
vton_img = vton_img.resize((IMG_W, IMG_H)) | |
print('%.2fs' % (time.time() - stt)) | |
stt = time.time() | |
print('get agnostic map... ', end='') | |
keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H))) | |
model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H))) | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints, radius=5) | |
mask = mask.resize((IMG_W, IMG_H), Image.NEAREST) | |
mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map | |
print('%.2fs' % (time.time() - stt)) | |
stt = time.time() | |
print('get densepose... ', end='') | |
vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose | |
densepose = densepose_model_hd.execute(vton_img) # densepose | |
print('%.2fs' % (time.time() - stt)) | |
batch = get_batch( | |
vton_img, | |
garm_img, | |
densepose, | |
masked_vton_img, | |
mask, | |
IMG_H, | |
IMG_W | |
) | |
if is_custom: | |
sample = stable_viton_model_hd( | |
batch, | |
n_steps, | |
) | |
else: | |
sample = stable_viton_model_hd2( | |
batch, | |
n_steps, | |
) | |
return sample | |
example_path = opj(os.path.dirname(__file__), 'examples_eternal') | |
example_model_ps = sorted(glob(opj(example_path, "model/*"))) | |
example_garment_ps = sorted(glob(opj(example_path, "garment/*"))) | |
with gr.Blocks(css='style.css') as demo: | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1>Rdy2Wr.AI StableVITON Demo πππ</h1> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href='https://arxiv.org/abs/2312.01725'> | |
<img src="https://img.shields.io/badge/arXiv-2312.01725-red"> | |
</a> | |
| |
<a href='https://rlawjdghek.github.io/StableVITON/'> | |
<img src='https://img.shields.io/badge/page-github.io-blue.svg'> | |
</a> | |
| |
<a href='https://github.com/rlawjdghek/StableVITON'> | |
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'> | |
</a> | |
| |
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'> | |
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'> | |
</a> | |
</div> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown("## Experience virtual try-on with your own images!") | |
with gr.Row(): | |
with gr.Column(): | |
vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0]) | |
example = gr.Examples( | |
inputs=vton_img, | |
examples_per_page=14, | |
examples=example_model_ps) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0]) | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=14, | |
examples=example_garment_ps) | |
with gr.Column(): | |
result_gallery = gr.Image(label='Output', show_label=False, scale=1) | |
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
with gr.Column(): | |
run_button = gr.Button(value="Run") | |
n_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20, step=1) | |
is_custom = gr.Checkbox(label="customized model") | |
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
ips = [vton_img, garm_img, n_steps, is_custom] | |
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery]) | |
demo.queue().launch() | |