rlawjdghek commited on
Commit
8df522a
Β·
1 Parent(s): ad267aa
app.py CHANGED
@@ -1,7 +1,7 @@
1
  from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
2
  from preprocess.humanparsing.run_parsing import Parsing
3
  from preprocess.openpose.run_openpose import OpenPose
4
- import pytorch_lightning as pl
5
  import os
6
  import sys
7
  import time
@@ -17,14 +17,13 @@ import spaces
17
 
18
  from cldm.model import create_model
19
  from cldm.plms_hacked import PLMSSampler
20
- from utils_stableviton import get_batch, get_mask_location, tensor2img
21
- print("pip import done")
22
 
23
  PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
24
  sys.path.insert(0, str(PROJECT_ROOT))
25
 
26
- IMG_H = 512
27
- IMG_W = 384
28
 
29
  openpose_model_hd = OpenPose(0)
30
  openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
@@ -44,18 +43,27 @@ config.model.params.img_W = IMG_W
44
  params = config.model.params
45
 
46
  model = create_model(config_path=None, config=config)
47
- model.load_state_dict(torch.load("./checkpoints/VITONHD.ckpt", map_location="cpu")["state_dict"])
48
  model = model.cuda()
49
  model.eval()
50
  sampler = PLMSSampler(model)
51
- # #### model init <<<<
52
 
 
 
 
 
 
53
 
 
 
 
 
54
  def stable_viton_model_hd(
55
  batch,
56
  n_steps,
57
  ):
58
  z, cond = model.get_input(batch, params.first_stage_key)
 
59
  bs = z.shape[0]
60
  c_crossattn = cond["c_crossattn"][0][:bs]
61
  if c_crossattn.ndim == 4:
@@ -71,16 +79,16 @@ def stable_viton_model_hd(
71
 
72
  ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
73
  start_code = model.q_sample(z, ts)
74
-
75
  output, _, _ = sampler.sample(
76
  n_steps,
77
  bs,
78
- (4, IMG_H // 8, IMG_W // 8),
79
  cond,
80
- x_T=start_code,
81
  verbose=False,
82
  eta=0.0,
83
- unconditional_conditioning=uc_full,
84
  )
85
 
86
  output = model.decode_first_stage(output)
@@ -88,61 +96,107 @@ def stable_viton_model_hd(
88
  pil_output = Image.fromarray(output)
89
  return pil_output
90
 
91
- @spaces.GPU # TODO: turn on when final upload
92
  @torch.no_grad()
93
- def process_hd(vton_img, garm_img, n_steps):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  model_type = 'hd'
95
  category = 0 # 0:upperbody; 1:lowerbody; 2:dress
96
 
97
  stt = time.time()
98
  print('load images... ', end='')
99
- garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
100
- vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
 
 
 
 
 
 
 
101
  print('%.2fs' % (time.time() - stt))
102
 
103
  stt = time.time()
104
  print('get agnostic map... ', end='')
105
  keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
106
  model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
107
- mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
108
  mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
109
  mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
110
  masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
111
  print('%.2fs' % (time.time() - stt))
112
 
 
 
113
  stt = time.time()
114
  print('get densepose... ', end='')
115
  vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose
116
  densepose = densepose_model_hd.execute(vton_img) # densepose
117
-
118
- # human_img_arg = _apply_exif_orientation(vton_img.resize((IMG_W, IMG_H)))
119
- # human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
120
- # args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
121
- # verbosity = getattr(args, "verbosity", None)
122
- # pose_img = args.func(args, human_img_arg)
123
- # pose_img = pose_img[:, :, ::-1]
124
- # pose_img = Image.fromarray(pose_img).resize((IMG_W, IMG_H))
125
-
126
  print('%.2fs' % (time.time() - stt))
127
 
128
  batch = get_batch(
129
- vton_img,
130
- garm_img,
131
- densepose,
132
- masked_vton_img,
133
- mask,
134
- IMG_H,
135
  IMG_W
136
  )
137
-
138
- sample = stable_viton_model_hd(
139
- batch,
140
- n_steps
141
- )
 
 
 
 
 
 
142
  return sample
143
 
144
 
145
- example_path = opj(os.path.dirname(__file__), 'examples')
146
  example_model_ps = sorted(glob(opj(example_path, "model/*")))
147
  example_garment_ps = sorted(glob(opj(example_path, "garment/*")))
148
 
@@ -151,7 +205,7 @@ with gr.Blocks(css='style.css') as demo:
151
  """
152
  <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
153
  <div>
154
- <h1>StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
155
  <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
156
  <a href='https://arxiv.org/abs/2312.01725'>
157
  <img src="https://img.shields.io/badge/arXiv-2312.01725-red">
@@ -189,17 +243,15 @@ with gr.Blocks(css='style.css') as demo:
189
  examples_per_page=14,
190
  examples=example_garment_ps)
191
  with gr.Column():
192
- result_gallery = gr.Image(label='Output', show_label=False, scale=1)
193
- # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", scale=1)
194
  with gr.Column():
195
  run_button = gr.Button(value="Run")
196
- # TODO: change default values (important!)
197
- # n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
198
- n_steps = gr.Slider(label="Steps", minimum=20, maximum=70, value=25, step=1)
199
- # guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
200
  # seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
201
 
202
- ips = [vton_img, garm_img, n_steps]
203
  run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
204
 
205
  demo.queue().launch()
 
1
  from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
2
  from preprocess.humanparsing.run_parsing import Parsing
3
  from preprocess.openpose.run_openpose import OpenPose
4
+
5
  import os
6
  import sys
7
  import time
 
17
 
18
  from cldm.model import create_model
19
  from cldm.plms_hacked import PLMSSampler
20
+ from utils_stableviton import get_mask_location, get_batch, tensor2img, center_crop
 
21
 
22
  PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
23
  sys.path.insert(0, str(PROJECT_ROOT))
24
 
25
+ IMG_H = 1024
26
+ IMG_W = 768
27
 
28
  openpose_model_hd = OpenPose(0)
29
  openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
 
43
  params = config.model.params
44
 
45
  model = create_model(config_path=None, config=config)
46
+ model.load_state_dict(torch.load("./checkpoints/eternal_1024.ckpt", map_location="cpu")["state_dict"])
47
  model = model.cuda()
48
  model.eval()
49
  sampler = PLMSSampler(model)
 
50
 
51
+ model2 = create_model(config_path=None, config=config)
52
+ model2.load_state_dict(torch.load("./checkpoints/VITONHD_1024.ckpt", map_location="cpu")["state_dict"])
53
+ model2 = model.cuda()
54
+ model2.eval()
55
+ sampler2 = PLMSSampler(model2)
56
 
57
+ # #### model init <<<<
58
+ @spaces.GPU
59
+ @torch.autocast("cuda")
60
+ @torch.no_grad()
61
  def stable_viton_model_hd(
62
  batch,
63
  n_steps,
64
  ):
65
  z, cond = model.get_input(batch, params.first_stage_key)
66
+ z = z
67
  bs = z.shape[0]
68
  c_crossattn = cond["c_crossattn"][0][:bs]
69
  if c_crossattn.ndim == 4:
 
79
 
80
  ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
81
  start_code = model.q_sample(z, ts)
82
+ torch.cuda.empty_cache()
83
  output, _, _ = sampler.sample(
84
  n_steps,
85
  bs,
86
+ (4, IMG_H//8, IMG_W//8),
87
  cond,
88
+ x_T=start_code,
89
  verbose=False,
90
  eta=0.0,
91
+ unconditional_conditioning=uc_full,
92
  )
93
 
94
  output = model.decode_first_stage(output)
 
96
  pil_output = Image.fromarray(output)
97
  return pil_output
98
 
99
+ @torch.autocast("cuda")
100
  @torch.no_grad()
101
+ def stable_viton_model_hd2(
102
+ batch,
103
+ n_steps,
104
+ ):
105
+ z, cond = model2.get_input(batch, params.first_stage_key)
106
+ z = z
107
+ bs = z.shape[0]
108
+ c_crossattn = cond["c_crossattn"][0][:bs]
109
+ if c_crossattn.ndim == 4:
110
+ c_crossattn = model2.get_learned_conditioning(c_crossattn)
111
+ cond["c_crossattn"] = [c_crossattn]
112
+ uc_cross = model2.get_unconditional_conditioning(bs)
113
+ uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
114
+ uc_full["first_stage_cond"] = cond["first_stage_cond"]
115
+ for k, v in batch.items():
116
+ if isinstance(v, torch.Tensor):
117
+ batch[k] = v.cuda()
118
+ sampler2.model.batch = batch
119
+
120
+ ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
121
+ start_code = model2.q_sample(z, ts)
122
+ torch.cuda.empty_cache()
123
+ output, _, _ = sampler2.sample(
124
+ n_steps,
125
+ bs,
126
+ (4, IMG_H//8, IMG_W//8),
127
+ cond,
128
+ x_T=start_code,
129
+ verbose=False,
130
+ eta=0.0,
131
+ unconditional_conditioning=uc_full,
132
+ )
133
+
134
+ output = model2.decode_first_stage(output)
135
+ output = tensor2img(output)
136
+ pil_output = Image.fromarray(output)
137
+ return pil_output
138
+
139
+ # @spaces.GPU # TODO: turn on when final upload
140
+ @torch.no_grad()
141
+ def process_hd(vton_img, garm_img, n_steps, is_custom):
142
  model_type = 'hd'
143
  category = 0 # 0:upperbody; 1:lowerbody; 2:dress
144
 
145
  stt = time.time()
146
  print('load images... ', end='')
147
+ # garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
148
+ # vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
149
+ garm_img = Image.open(garm_img)
150
+ vton_img = Image.open(vton_img)
151
+
152
+ vton_img = center_crop(vton_img)
153
+ garm_img = garm_img.resize((IMG_W, IMG_H))
154
+ vton_img = vton_img.resize((IMG_W, IMG_H))
155
+
156
  print('%.2fs' % (time.time() - stt))
157
 
158
  stt = time.time()
159
  print('get agnostic map... ', end='')
160
  keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
161
  model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
162
+ mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints, radius=5)
163
  mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
164
  mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
165
  masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
166
  print('%.2fs' % (time.time() - stt))
167
 
168
+ # breakpoint()
169
+
170
  stt = time.time()
171
  print('get densepose... ', end='')
172
  vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose
173
  densepose = densepose_model_hd.execute(vton_img) # densepose
 
 
 
 
 
 
 
 
 
174
  print('%.2fs' % (time.time() - stt))
175
 
176
  batch = get_batch(
177
+ vton_img,
178
+ garm_img,
179
+ densepose,
180
+ masked_vton_img,
181
+ mask,
182
+ IMG_H,
183
  IMG_W
184
  )
185
+
186
+ if is_custom:
187
+ sample = stable_viton_model_hd(
188
+ batch,
189
+ n_steps,
190
+ )
191
+ else:
192
+ sample = stable_viton_model_hd2(
193
+ batch,
194
+ n_steps,
195
+ )
196
  return sample
197
 
198
 
199
+ example_path = opj(os.path.dirname(__file__), 'examples_eternal')
200
  example_model_ps = sorted(glob(opj(example_path, "model/*")))
201
  example_garment_ps = sorted(glob(opj(example_path, "garment/*")))
202
 
 
205
  """
206
  <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
207
  <div>
208
+ <h1>Rdy2Wr.AI StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
209
  <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
210
  <a href='https://arxiv.org/abs/2312.01725'>
211
  <img src="https://img.shields.io/badge/arXiv-2312.01725-red">
 
243
  examples_per_page=14,
244
  examples=example_garment_ps)
245
  with gr.Column():
246
+ result_gallery = gr.Image(label='Output', show_label=False, preview=True, scale=1)
247
+ # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
248
  with gr.Column():
249
  run_button = gr.Button(value="Run")
250
+ n_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20, step=1)
251
+ is_custom = gr.Checkbox(label="customized model")
 
 
252
  # seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
253
 
254
+ ips = [vton_img, garm_img, n_steps, is_custom]
255
  run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
256
 
257
  demo.queue().launch()
cldm/cldm.py CHANGED
@@ -32,6 +32,7 @@ class ControlLDM(LatentDiffusion):
32
  *args,
33
  **kwargs
34
  ):
 
35
  self.control_stage_config = control_stage_config
36
  self.use_pbe_weight = use_pbe_weight
37
  self.u_cond_percent = u_cond_percent
@@ -62,7 +63,7 @@ class ControlLDM(LatentDiffusion):
62
  control = control[:bs]
63
  control = control.to(self.device)
64
  control = einops.rearrange(control, 'b h w c -> b c h w')
65
- control = control.to(memory_format=torch.contiguous_format).float()
66
  control_lst.append(control)
67
  control = control_lst
68
  else:
@@ -71,7 +72,7 @@ class ControlLDM(LatentDiffusion):
71
  control = control[:bs]
72
  control = control.to(self.device)
73
  control = einops.rearrange(control, 'b h w c -> b c h w')
74
- control = control.to(memory_format=torch.contiguous_format).float()
75
  control = [control]
76
  cond_dict = dict(c_crossattn=[c], c_concat=control)
77
  if self.first_stage_key_cond is not None:
 
32
  *args,
33
  **kwargs
34
  ):
35
+ self.device = torch.device("cuda")
36
  self.control_stage_config = control_stage_config
37
  self.use_pbe_weight = use_pbe_weight
38
  self.u_cond_percent = u_cond_percent
 
63
  control = control[:bs]
64
  control = control.to(self.device)
65
  control = einops.rearrange(control, 'b h w c -> b c h w')
66
+ control = control.to(memory_format=torch.contiguous_format)
67
  control_lst.append(control)
68
  control = control_lst
69
  else:
 
72
  control = control[:bs]
73
  control = control.to(self.device)
74
  control = einops.rearrange(control, 'b h w c -> b c h w')
75
+ control = control.to(memory_format=torch.contiguous_format)
76
  control = [control]
77
  cond_dict = dict(c_crossattn=[c], c_concat=control)
78
  if self.first_stage_key_cond is not None:
ldm/models/autoencoder.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- import pytorch_lightning as pl
3
  import torch.nn as nn
4
  import torch.nn.functional as F
5
  from contextlib import contextmanager
@@ -9,9 +9,9 @@ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
9
 
10
  from ldm.util import instantiate_from_config
11
  from ldm.modules.ema import LitEma
12
-
13
 
14
- class AutoencoderKL(pl.LightningModule):
 
15
  def __init__(self,
16
  ddconfig,
17
  lossconfig,
 
1
  import torch
2
+ # import pytorch_lightning as pl
3
  import torch.nn as nn
4
  import torch.nn.functional as F
5
  from contextlib import contextmanager
 
9
 
10
  from ldm.util import instantiate_from_config
11
  from ldm.modules.ema import LitEma
 
12
 
13
+
14
+ class AutoencoderKL(nn.Module):
15
  def __init__(self,
16
  ddconfig,
17
  lossconfig,
ldm/models/diffusion/ddpm.py CHANGED
@@ -9,7 +9,7 @@ https://github.com/CompVis/taming-transformers
9
  import torch
10
  import torch.nn as nn
11
  import numpy as np
12
- import pytorch_lightning as pl
13
  from torch.optim.lr_scheduler import LambdaLR
14
  from einops import rearrange, repeat
15
  from contextlib import contextmanager, nullcontext
@@ -47,7 +47,7 @@ def disabled_train(self, mode=True):
47
  def uniform_on_device(r1, r2, shape, device):
48
  return (r1 - r2) * torch.rand(*shape, device=device) + r2
49
 
50
- class DDPM(pl.LightningModule):
51
  # classic DDPM with Gaussian diffusion, in image space
52
  def __init__(self,
53
  unet_config,
 
9
  import torch
10
  import torch.nn as nn
11
  import numpy as np
12
+ # import pytorch_lightning as pl
13
  from torch.optim.lr_scheduler import LambdaLR
14
  from einops import rearrange, repeat
15
  from contextlib import contextmanager, nullcontext
 
47
  def uniform_on_device(r1, r2, shape, device):
48
  return (r1 - r2) * torch.rand(*shape, device=device) + r2
49
 
50
+ class DDPM(nn.Module):
51
  # classic DDPM with Gaussian diffusion, in image space
52
  def __init__(self,
53
  unet_config,
utils_stableviton.py CHANGED
@@ -24,7 +24,6 @@ label_map = {
24
  "scarf": 17,
25
  }
26
 
27
-
28
  def extend_arm_mask(wrist, elbow, scale):
29
  wrist = elbow + scale * (wrist - elbow)
30
  return wrist
@@ -56,7 +55,7 @@ def refine_mask(mask):
56
  return refine_mask
57
 
58
 
59
- def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384, height=512):
60
  im_parse = model_parse.resize((width, height), Image.NEAREST)
61
  parse_array = np.array(im_parse)
62
 
@@ -149,10 +148,10 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
149
  parser_mask_fixed += hands_left + hands_right
150
 
151
  parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
152
- parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
153
  if category == 'dresses' or category == 'upper_body':
154
  neck_mask = (parse_array == 18).astype(np.float32)
155
- neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
156
  neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
157
  parse_mask = np.logical_or(parse_mask, neck_mask)
158
  arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
@@ -204,3 +203,14 @@ def tensor2img(x):
204
  x = np.concatenate([x,x,x], axis=-1)
205
  return x
206
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "scarf": 17,
25
  }
26
 
 
27
  def extend_arm_mask(wrist, elbow, scale):
28
  wrist = elbow + scale * (wrist - elbow)
29
  return wrist
 
55
  return refine_mask
56
 
57
 
58
+ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384, height=512, radius=5):
59
  im_parse = model_parse.resize((width, height), Image.NEAREST)
60
  parse_array = np.array(im_parse)
61
 
 
148
  parser_mask_fixed += hands_left + hands_right
149
 
150
  parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
151
+ parse_mask = cv2.dilate(parse_mask, np.ones((radius, radius), np.uint16), iterations=5)
152
  if category == 'dresses' or category == 'upper_body':
153
  neck_mask = (parse_array == 18).astype(np.float32)
154
+ neck_mask = cv2.dilate(neck_mask, np.ones((radius, radius), np.uint16), iterations=1)
155
  neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
156
  parse_mask = np.logical_or(parse_mask, neck_mask)
157
  arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
 
203
  x = np.concatenate([x,x,x], axis=-1)
204
  return x
205
 
206
+ def center_crop(image):
207
+ width, height = image.size
208
+ new_height = height
209
+ new_width = height*3/4
210
+ left = (width - new_width)/2
211
+ top = (height - new_height)/2
212
+ right = (width + new_width)/2
213
+ bottom = (height + new_height)/2
214
+
215
+ image = image.crop((left, top, right, bottom))
216
+ return image