File size: 42,144 Bytes
f13eeb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
import os, random, re

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import llama_index
from llama_index import Document

import google.generativeai as genai

from llama_index.schema import MetadataMode, NodeRelationship
from llama_index.text_splitter import TokenTextSplitter
from llama_index import SimpleDirectoryReader

from copy import deepcopy

import time
import fitz
import errno
import typing
import requests

import networkx as nx
from base64 import b64encode

from typing import Optional
from typing import Tuple, List
from typing import Dict, List, Union, Any, Iterable

from IPython.display import Markdown, display

import PIL
from PIL import Image

from tqdm import tqdm

import json

# llama_index Documents in info213_docs 
# fitz_docs which is opened by fitz.open(path_input)
# both list of docs should have the same page numbers


def classify_image(image_path:str, model:genai.GenerativeModel) -> str:
    """
    Given an image path, classify the image as floor plan, equipment, etc...
    INPUT: image_path: the path to the image
           model: LLM model
    OUTPUT: the type of the image in a string
    """

    image_for_gemini = Image.open(image_path)

    
    # Specify the image description prompt.
    image_description_prompt = """
    Analyze and classify the image into one of the following categories:
    floor plan, flow chart, HAVC equipment, sign, and other. Ouput one and 
    only one category names.
    """

    model_input = [image_description_prompt, image_for_gemini]

    response = model.generate_content(
                model_input
        )
    
    return response.text

# Combine node's keywords, triples, questions, and text from a row
def combine_node_fields(row):
    result = ""
    result = result + "KEYWORDS: " + row['node_keywords'] + ";\n"

    result = result + "TRIPLES: " + row['node_triples'] + ";\n"

    result = result + "ANSWERABLE_QUESTIONS: " + row['node_answerable_questions'] + ";\n"

    result = result + "TEXT: " + row['node_text'] +".\n"

    return result

def display_images(
    images: Iterable[Union[str, PIL.Image.Image]], resize_ratio: float = 0.5
) -> None:
    """
    Displays a series of images provided as paths or PIL Image objects.

    Args:
        images: An iterable of image paths or PIL Image objects.
        resize_ratio: The factor by which to resize each image (default 0.5).

    Returns:
        None (displays images using IPython or Jupyter notebook).
    """

    # Convert paths to PIL images if necessary
    pil_images = []
    for image in images:
        if isinstance(image, str):
            pil_images.append(PIL.Image.open(image))
        else:
            pil_images.append(image)

    # Resize and display each image
    for img in pil_images:
        original_width, original_height = img.size
        new_width = int(original_width * resize_ratio)
        new_height = int(original_height * resize_ratio)
        resized_img = img.resize((new_width, new_height))
        display(resized_img)
        print("\n")


def doc_images_description_dict(fdocs:fitz.Document, fpage: fitz.Document, lpage: 
                                llama_index.Document, image_save_dir:str, 
                               image_description_prompt:str, model:genai.GenerativeModel) -> List[dict]:
    
    file_name = lpage.metadata['file_name']
    page_label = lpage.metadata['page_label']

    images = fpage.get_images()

    dict_list = []
    
    for image_no, image in enumerate(images):

        image_dict = {}
        
        xref = image[0]
        pix = fitz.Pixmap(fitz_docs, xref)

        # Create the image file name
        image_name = f"{image_save_dir}/{file_name}_image_{page_label}_{image_no}_{xref}.jpeg"

        # Save the image to the specified location
        pix.save(image_name)

        # Load the saved image as a Gemini Image Object
        image_for_gemini = Image.open(io.BytesIO(pix.tobytes("jpeg")))

        model_input = [image_description_prompt, image_for_gemini]

        response = gemini_pro_model.generate_content(
            model_input
        )

        image_dict['doc_id'] = lpage.doc_id

        image_dict['image_id'] = image_no

        image_dict['image_name'] = image_name

        mdict = lpage.metadata

        image_dict['page_label'] = mdict['page_label']
        image_dict['file_name'] = mdict['file_name'] 
        image_dict['file_path'] = mdict['file_path']
        image_dict['file_type'] = mdict['file_type']
    
        image_dict['course_material_type'] = mdict['course_material_type']
        image_dict['course_material_week'] = mdict['course_material_week']

        image_dict['description'] = response.text

        dict_list.append(image_dict)

    return dict_list


def docs_to_df(docs:llama_index.schema.Document, gemini_pro:genai.GenerativeModel) -> pd.DataFrame:
    """
    extract titles for docs, embed the documents and titles, and convert it to dataframe
    INPUT: docs: the documents extacted from a file
           gemini_pro: genai gemini pro model
    OUTPUT: docs_df: a dataframe containing the information of the docs extracted from the input file
    """

    docs_df = llamaindex_docs_df(docs)

    tqdm.pandas(desc="Processing rows for extracting document titles...")
    
    docs_df['doc_title'] = docs_df.progress_apply(lambda row: node_text_title(row['text'], gemini_pro), axis=1)

    #tqdm.pandas(desc="Processing rows for summiarizing documents...")

    #try:
    #    docs_df['doc_summary'] = docs_df.progress_apply(lambda row: text_summary(row['text'], gemini_pro), axis=1)
    #except:
    #    docs_df['doc_summary'] = None

    doc_summary_list = []
    for _, row in tqdm(docs_df.iterrows(), total=len(docs_df)):
        try:
            doc_summary_list.append(text_summary(row['text'], gemini_pro))
        except:
            #print(row['page_label'], row['text'])
            doc_summary_list.append(None)

    docs_df['doc_summary'] = doc_summary_list
    
    tqdm.pandas(desc="Processing rows for embedding documents and titles...")
    
    docs_df['doc_embedding'] = docs_df.progress_apply(lambda row: text_retrieval_document_embedding(row['text'], row['doc_title']), axis=1)

    return docs_df


def extract_image_description_df(image_path:str, category:str, model:genai.GenerativeModel) -> pd.DataFrame:
    """
    Extract description of the given image in the given category
    INPUT: image_path: the path to the image
           category: a string containing the category of the image
           model: a generative model
    OUTPUT: a DataFrame containing the metadata of the extracted images
    """

    image_for_gemini = Image.open(image_path)

    
    # Specify the image description prompt.
    image_description_prompt = """Explain what is going on in the image.
        If it's a table, extract all elements of the table.
        If it's a graph, explain the findings in the graph.
        Do not include any numbers that are not mentioned in the image:
    """

    if "floor plan" in category.lower():
        image_description_prompt = '''
            Please analyze the provided floor plan image and extract the following information 
            related to rooms, locations, connections, HVAC equipment, and sensors:
            1. Room Labels/Names: Identify and list all room labels or names shown on the floor plan.
            2. Room Connectivity: Indicate how different rooms are connected (doors, hallways, openings, etc.).
            3. HVAC Equipment: Locate and list all HVAC equipment depicted on the floor plan (e.g., air handling units, ductwork, vents, thermostats, etc.).
            4. Sensor Locations: Note the locations of any sensors or control devices related to the HVAC system (e.g., temperature sensors, occupancy sensors, etc.).
            5. Zoning/Partitions: If the floor plan shows any zoning or partitions related to HVAC control, please describe them.
            6. Special Areas: Highlight any areas that may have unique HVAC requirements (e.g., server rooms, laboratories, etc.).
            Please provide the extracted information in a structured format, separating the different categories as needed. Let me know if you need any clarification or have additional requirements for the information to be extracted from the floor plan.
        '''
    elif "flow chart" in category.lower():
        image_description_prompt = '''
            Please analyze the provided HVAC flow chart image and extract the following information:

            1. System Components: Identify and list all the major HVAC components shown in the flow chart (e.g., air handling units, chillers, boilers, pumps, cooling towers, etc.).
            2. Component Connections: Describe how the different HVAC components are connected, indicating the direction of airflow, water flow, refrigerant flow, etc.
            3. System Inputs/Outputs: Note any system inputs (e.g., outside air intake) or outputs (e.g., exhaust air) shown in the flow chart.
            4. Control Points: Locate any control points, sensors, or valves that regulate the flow or operation of the system components.
            5. Subsystems/Zones: If the flow chart illustrates subsystems or zones within the overall HVAC system, please describe them and their components.
            6. Operational Modes: Identify any operational modes or sequences depicted in the flow chart (e.g., heating mode, cooling mode, economizer mode, etc.).

            Please provide the extracted information in a clear and structured format, separating the different categories as needed. If any abbreviations or symbols are used in the flow chart, please include a legend or clarify their meanings. Let me know if you need any clarification or have additional requirements for the information to be extracted.
        '''
    elif "havc equipment" in category.lower():
        image_description_prompt = '''
            Please analyze the image I will provide, which contains HVAC (heating, ventilation, and 
            air conditioning) equipment. Describe the different components you can identify, such 
            as the type of equipment (furnace, air conditioner, ductwork, etc.), the apparent 
            condition of the equipment, and any other relevant details you can discern from the 
            image. Your analysis should help someone understand what is depicted in the HVAC system 
            shown in the picture. 
        '''
    else:
        image_description_prompt = '''Explain what is going on in the image.
            If it's a table, extract all elements of the table.
            If it's a graph, explain the findings in the graph.
            Do not include any numbers that are not mentioned in the image:
        '''
    
    dict_list = []

    path_last_sep_idx = image_path.rfind("/")
    file_name = image_path[path_last_sep_idx+1:]
    print("Processing the image: {}".format(file_name))
    
    model_input = [image_description_prompt, image_for_gemini]
    
    response = model.generate_content(
            model_input
    )

    image_dict = {}

    image_dict['image_path'] = image_path
    image_dict['file_name'] = file_name
            
    try:
        image_dict['image_description'] = response.text
    except Exception as e:
        print("Some errors happend in the response from Gemini.")
        image_dict['image_description'] = None
    
    dict_list.append(image_dict)
        
    return pd.DataFrame(dict_list)


def get_cosine_score(
    dataframe: pd.DataFrame, column_name: str, input_text_embd: np.ndarray
) -> float:
    """
    Calculates the cosine similarity between the user query embedding and the 
    dataframe embedding for a specific column.

    Args:
        dataframe: The pandas DataFrame containing the data to compare against.
        column_name: The name of the column containing the embeddings to compare with.
        input_text_embd: The NumPy array representing the user query embedding.

    Returns:
        The cosine similarity score (rounded to two decimal places) between the user query embedding and the dataframe embedding.
    """

    text_cosine_score = round(np.dot(dataframe[column_name], input_text_embd), 2)
        
    return text_cosine_score

def get_cosine_score_lists(
    dataframe: pd.DataFrame, column_name: str, query_embs: list 
) -> float:
    """
    Calculates the cosine similarity between the user query embedding and the dataframe embedding for a specific column. Both embeddings are in lists

    Args:
        dataframe: The pandas DataFrame containing the data to compare against.
        column_name: The name of the column containing the embeddings to compare with.
        input_text_embd: The query embeddings as a list of numbers 

    Returns:
        The cosine similarity score (rounded to two decimal places) between the user query embedding and the dataframe embedding.
    """
    
    text_cosine_score = round(np.dot(np.array(dataframe[column_name]), np.array(query_embs)), 2)
    return text_cosine_score


def get_relevant_images_from_query(
    query: str,
    images_df: pd.DataFrame,
    column_name: str = "",
    top_n: int = 3,
    embedding_size: int = 768,
    print_citation: bool = True,
) -> Dict[int, Dict[str, Any]]:
    """
    Finds the top N most similar images from a metadata DataFrame based on a text query.

    Args:
        query: The text query used for finding similar passages.
        images_df: A Pandas DataFrame containing the image metadata to search.
        column_name: The column name in the text_metadata_df containing the text embeddings or 
        text itself.
        top_n: The number of most similar text passages to return.
        embedding_size: The dimensionality of the text embeddings (only used if text embeddings 
        are stored in the column specified by `column_name`).
        print_citation: Whether to immediately print formatted citations for the matched text 
        passages (True) or just return the dictionary (False).

    Returns:
        A dictionary containing information about the top N most similar images, 
        including cosine scores, image_path, file_name, and description text.

    Raises:
        KeyError: If the specified `column_name` is not present in the `text_metadata_df`.
    """

    if column_name not in images_df.columns:
        raise KeyError(f"Column '{column_name}' not found in the 'images_df'")

    query_embs = text_query_embedding(query)
    
    # Calculate cosine similarity between query text and metadata text
    cosine_scores = images_df.apply(
        lambda row: get_cosine_score_lists(
            row,
            column_name,
            query_embs,
        ),
        axis=1,
    )

    # Get top N cosine scores and their indices
    top_n_indices = cosine_scores.nlargest(top_n).index.tolist()
    top_n_scores = cosine_scores.nlargest(top_n).values.tolist()

    # Create a dictionary to store matched images and their information
    final_images = {}

    for matched_no, index in enumerate(top_n_indices):
        # Create a sub-dictionary for each matched image
        final_images[matched_no] = {}

        # Store image path
        final_images[matched_no]["image_path"] = images_df.iloc[index][
            "image_path"
        ]

        # Store cosine score
        final_images[matched_no]["cosine_score"] = top_n_scores[matched_no]

    
        # Store image file name
        final_images[matched_no]["file_name"] = images_df.iloc[index]["file_name"]

        # Store image description
        final_images[matched_no]["image_description"] = images_df["image_description"][index]

        # Store image object
        final_images[matched_no]["image_object"] = Image.open(images_df.iloc[index]['image_path'])

    # Optionally print citations immediately
    if print_citation:
        print_text_to_image_citation(final_images)

    return final_images


def get_similar_text_from_query(
    query: str,
    nodes_df: pd.DataFrame,
    column_name: str = "",
    top_n: int = 3,
    embedding_size: int = 768,
    print_citation: bool = True,
) -> Dict[int, Dict[str, Any]]:
    """
    Finds the top N most similar text passages from a metadata DataFrame based on a text query.

    Args:
        query: The text query used for finding similar passages.
        nodes_df: A Pandas DataFrame containing the text metadata to search.
        column_name: The column name in the text_metadata_df containing the text embeddings or 
        text itself.
        top_n: The number of most similar text passages to return.
        embedding_size: The dimensionality of the text embeddings (only used if text embeddings 
        are stored in the column specified by `column_name`).
        print_citation: Whether to immediately print formatted citations for the matched text 
        passages (True) or just return the dictionary (False).

    Returns:
        A dictionary containing information about the top N most similar text passages, 
        including cosine scores, page numbers, chunk numbers (optional), and chunk text or 
        page text (depending on `chunk_text`).

    Raises:
        KeyError: If the specified `column_name` is not present in the `text_metadata_df`.
    """

    if column_name not in nodes_df.columns:
        raise KeyError(f"Column '{column_name}' not found in the 'nodes_df'")

    query_embs = text_query_embedding(query)
    
    # Calculate cosine similarity between query text and metadata text
    cosine_scores = nodes_df.apply(
        lambda row: get_cosine_score_lists(
            row,
            column_name,
            query_embs,
        ),
        axis=1,
    )

    # Get top N cosine scores and their indices
    top_n_indices = cosine_scores.nlargest(top_n).index.tolist()
    top_n_scores = cosine_scores.nlargest(top_n).values.tolist()

    # Create a dictionary to store matched text and their information
    final_text = {}

    for matched_textno, index in enumerate(top_n_indices):
        # Create a sub-dictionary for each matched text
        final_text[matched_textno] = {}

        # Store page number
        final_text[matched_textno]["page_num"] = nodes_df.iloc[index][
            "page_label"
        ]

        # Store cosine score
        final_text[matched_textno]["cosine_score"] = top_n_scores[matched_textno]

    
        # Store node id
        final_text[matched_textno]["node_id"] = nodes_df.iloc[index]["node_id"]

        # Store node text
        final_text[matched_textno]["node_text"] = nodes_df["node_text"][index]

    # Optionally print citations immediately
    if print_citation:
        print_text_to_text_citation(final_text)

    return final_text


def llamaindex_doc_dict(doc: llama_index.schema.Document) -> dict:
    """
    convert a LlamaIndex Document object to a dictionary
    """
    
    doc_dict = {}

    doc_dict['doc_id'] = doc.doc_id
    
    mdict = doc.metadata
        
    doc_dict['page_label'] = mdict['page_label']
    doc_dict['file_name'] = mdict['file_name'] 
    doc_dict['file_path'] = mdict['file_path']
    doc_dict['file_type'] = mdict['file_type']

    doc_dict['file_title'] = mdict['file_title']
    doc_dict['file_date'] = mdict['file_date']
    doc_dict['file_subtitle'] = mdict['file_subtitle']
    doc_dict['table_of_content'] = mdict['table_of_content']
    
    doc_dict['text'] = doc.text

    return doc_dict


def llamaindex_docs_df(docs: List[llama_index.schema.Document]) -> pd.DataFrame:
    """
    convert a list of LlamaIndex Document object to a Pandas DataFrame with columns
    """
    
    recs = []
    for doc in docs:
        recs.append(llamaindex_doc_dict(doc))

    return pd.DataFrame(recs)


def llamaindex_docs_from_path(path_input:str, 
    gemini_pro:genai.GenerativeModel) -> llama_index.schema.Document:
    
    """
    extract llama_index Document from the file given the path_input
    INPUT: path_input: the path pointing to the file in the disk
           gemini_pro: the gemini pro model for extracting course metadata
    OUTPUT: docs: llama_index Document extracted from the file by the path_input
    """
    
    docs = SimpleDirectoryReader(input_files=[path_input]).load_data()

    first2pages = docs[0].text + " " + docs[1].text

    metadata_extraction_sys_content = '''
        You are a helpful assistant focusing on extracting the metadata describing the input document.
    '''

    metadata_extraction_prompt = '''
        {}\n
        Please perform metadata extraction on the given text. 
        Focuse on the following metadata fields:
        title: what the document is about;
        date: when the document was created;
        subtitle: what specific content the document is about;
        table of content: section titles and their page numbers.
        Output NA if there is no value for a metadata field. 
        Output the results in a dictionary. 
        TEXT: ```{}```
    '''

    msg = metadata_extraction_prompt.format(metadata_extraction_sys_content, first2pages)

    response = gemini_pro.generate_content(
        msg
    )

    response_string = response.text.strip('`')

    extracted_meta_dict = {}
    
    try:
        extracted_meta_dict = json.loads(response_string)
    except json.decoder.JSONDecodeError as e:
        # Handling the JSON decoding error
        extracted_meta_dict = {}

    for doc in tqdm(docs, total=len(docs), desc="Adding metadata to docs..."):
        if 'title' in extracted_meta_dict:
            doc.metadata['file_title'] = extracted_meta_dict['title']
        else:
            doc.metadata['file_title'] = None
                
        if 'date' in extracted_meta_dict:
            doc.metadata['file_date'] = extracted_meta_dict['date']
        else:
            doc.metadata['file_date'] = None
    
        if 'subtitle' in extracted_meta_dict:
            doc.metadata['file_subtitle'] = extracted_meta_dict['subtitle']
        else:
            doc.metadata['file_subtitle'] = None
    
        if 'table of content' in extracted_meta_dict:
            doc.metadata['table_of_content'] = extracted_meta_dict['table of content']
        else:
            doc.metadata['table_of_content'] = None

    return docs

def llamaindex_node_dict(node: llama_index.schema.TextNode) -> dict:
    """
    convert a LlamaIndex TextNode object to a dictionary
    INPUT: doc_id: the document from where the node extracted
           node_order: an integer for the order of the node in the parent document
           node: a TextNode extracted from the parent document
    OUTPUT: dictionary for the node's information
    """
    
    node_dict = {}

    node_dict['node_id'] = node.node_id
    
    mdict = node.metadata

    node_dict['page_label'] = mdict['page_label']
    node_dict['file_name'] = mdict['file_name']
    node_dict['file_path'] = mdict['file_path']
    node_dict['file_type'] = mdict['file_type']
    #node_dict['document_title'] = mdict['document_title']
    #node_dict['questions_this_excerpt_can_answer'] = mdict['questions_this_excerpt_can_answer']
    #node_dict['section_summary'] = mdict['section_summary']

    node_dict['file_title'] = mdict['file_title']
    node_dict['file_date'] = mdict['file_date']
    node_dict['file_subtitle'] = mdict['file_subtitle']
    
    node_dict['node_text'] = node.text

    node_dict['start_char_idx'] = node.start_char_idx
    node_dict['end_char_idx'] = node.end_char_idx

    rdict = node.relationships

    if NodeRelationship.SOURCE in rdict.keys():
        node_dict['doc_id'] = rdict[NodeRelationship.SOURCE].node_id
    else:
        node_dict['doc_id'] = None

    if NodeRelationship.PREVIOUS in rdict.keys():
        node_dict['previous_node'] = rdict[NodeRelationship.PREVIOUS].node_id
    else:
        node_dict['previous_node'] = None

    if NodeRelationship.NEXT in rdict.keys():
        node_dict['next_node'] = rdict[NodeRelationship.NEXT].node_id
    else:
        node_dict['next_node'] = None
    

    return node_dict
    

def llamaindex_nodes_df(nodes: List[llama_index.schema.TextNode]) -> pd.DataFrame:
    """
    convert a list of LlamaIndex TextNode object to a Pandas DataFrame with columns
    """
    
    recs = []
    for node in nodes:
        recs.append(llamaindex_node_dict(node))

    return pd.DataFrame(recs)


def node_text_title(text:str, model:genai.GenerativeModel) -> str:
    """
    use gemini to generate a title for the input text
    """

    prompt = '''
        Please summairze the given input text 
        enclosed within the three backticks. Generate a short
        title for the text. Correct misspells and syntactic errors.
        Output a short title string only.
        TEXT: ```{}```
        '''
    msg = prompt.format(text)

    response = model.generate_content(
        msg
    )

    return response.text

def pdf_extract_images(pdf_path:str, image_save_dir:str):
    """
    Given a PDF path, extract images from the PDf file and save in disk
    INPUT: pdf_path: the path to the PDF file
           image_save_dir: the directory for storing the extracted images
    OUTPUT: None
    """

    fitz_docs = fitz.open(pdf_path)

    path_last_sep_idx = pdf_path.rfind("/")
    file_name = pdf_path[path_last_sep_idx+1:]
    print("Processing the images from the pages of {}".format(file_name))
    
    for idx, fpage in tqdm(enumerate(fitz_docs), total=len(fitz_docs)):
    
        images = fpage.get_images()
    
        page_label = idx + 1 # llamaindex document pages indexing start from 1
        
        for image_no, image in enumerate(images):
            
            xref = image[0]
            pix = fitz.Pixmap(fitz_docs, xref)
    
            # Create the image file name
            image_name = f"{image_save_dir}/extracted_from_{file_name}_{page_label}_{image_no}_{xref}.jpeg"
    
            # Save the image to the specified location
            pix.save(image_name)



def pdf_images_description_df(pdf_path:str, docs_df_path:str, image_save_dir:str) -> pd.DataFrame:
    """
    Given a PDF path and the path to the DataFrame containing the metadata of the pages extracted from the PDF file, extract the metadata of images from the PDf file as a DataFrame
    INPUT: pdf_path: the path to the PDF file
           docs_df_path: the path to the DataFrame containing page metadata extracted from the PDF file
           image_save_dir: the directory for storing the extracted images
    OUTPUT: a DataFrame containing the metadata of the extracted images
    """

    fitz_docs = fitz.open(pdf_path)

    doc_df = pd.read_csv(docs_df_path)

    # Specify the image description prompt.
    image_description_prompt = """Explain what is going on in the image.
        If it's a table, extract all elements of the table.
        If it's a graph, explain the findings in the graph.
        Do not include any numbers that are not mentioned in the image:
    """

    dict_list = []

    path_last_sep_idx = pdf_path.rfind("/")
    file_name = pdf_path[path_last_sep_idx+1:]
    print("Processing the images from the pages of {}".format(file_name))
    
    for idx, fpage in tqdm(enumerate(fitz_docs), total=len(fitz_docs)):
    
        images = fpage.get_images()
    
        page_label = idx + 1 # llamaindex document pages indexing start from 1
        
        for image_no, image in enumerate(images):
    
            image_dict = {}
            
            xref = image[0]
            pix = fitz.Pixmap(fitz_docs, xref)
    
            # Create the image file name
            image_name = f"{image_save_dir}/{file_name}_image_{page_label}_{image_no}_{xref}.jpeg"
    
            # Save the image to the specified location
            pix.save(image_name)
    
            # Load the saved image as a Gemini Image Object
            image_for_gemini = Image.open(io.BytesIO(pix.tobytes("jpeg")))
    
            model_input = [image_description_prompt, image_for_gemini]
    
            response = gemini_pro_vision.generate_content(
                model_input
            )
    
            image_dict['image_id'] = image_no
            image_dict['image_name'] = image_name
            image_dict['page_label'] = page_label
            
            try:
                doc_page = doc_df[doc_df.page_label == page_label].iloc[0]
    
                image_dict['doc_id'] = doc_page['doc_id']
                image_dict['file_name'] = doc_page['file_name'] 
                image_dict['file_path'] = doc_page['file_path']
                image_dict['file_type'] = doc_page['file_type']
                image_dict['course_material_type'] = doc_page['course_material_type']
                image_dict['course_material_week'] = doc_page['course_material_week']
        
            except Exception as e:
                print("Some errors happened in the doc_page of the doc_df.")
                image_dict['doc_id'] = None
                image_dict['file_name'] = None
                image_dict['file_path'] = None
                image_dict['file_type'] = None
                image_dict['course_material_type'] = None
                image_dict['course_material_week'] = None

            try:
                image_dict['image_description'] = response.text
            except Exception as e:
                print("Some errors happend in the response from Gemini.")
                
                image_dict['image_description'] = None
    
            dict_list.append(image_dict)

            time.sleep(2)
        
    return pd.DataFrame(dict_list)


# Add colors to the print
class Color:
    """
    This class defines a set of color codes that can be used to print text in different colors.
    This will be used later to print citations and results to make outputs more readable.
    """

    PURPLE: str = "\033[95m"
    CYAN: str = "\033[96m"
    DARKCYAN: str = "\033[36m"
    BLUE: str = "\033[94m"
    GREEN: str = "\033[92m"
    YELLOW: str = "\033[93m"
    RED: str = "\033[91m"
    BOLD: str = "\033[1m"
    UNDERLINE: str = "\033[4m"
    END: str = "\033[0m"

def print_text_to_image_citation(
    final_images: Dict[int, Dict[str, Any]], print_top: bool = True
) -> None:
    """
    Prints a formatted citation for each matched image in a dictionary.

    Args:
        final_images: A dictionary containing information about matched images,
                    with keys as image number and values as dictionaries containing
                    image path, page number, page text, cosine similarity score, and image description.
        print_top: A boolean flag indicating whether to only print the first citation (True) or all citations (False).

    Returns:
        None (prints formatted citations to the console).
    """

    color = Color()

    # Iterate through the matched image citations
    for imageno, image_dict in final_images.items():
        # Print the citation header
        print(
            color.RED + f"Citation {imageno + 1}:",
            "Mached image path, page number and page text: \n" + color.END,
        )

        # Print the cosine similarity score
        print(color.BLUE + f"score: " + color.END, image_dict["cosine_score"])

        # Print the image path
        print(color.BLUE + f"path: " + color.END, image_dict["image_path"])

        # Print the file name
        print(color.BLUE + f"file name: " + color.END, image_dict["file_name"])

        # Print the image description
        print(
            color.BLUE + f"image description: " + color.END,
            image_dict["image_description"],
        )

        # Display image
        display_images([image_dict["image_object"]])
        
        # Only print the first citation if print_top is True
        if print_top and imageno == 0:
            break


def print_text_to_text_citation(
    final_text: Dict[int, Dict[str, Any]],
    print_top: bool = True,
) -> None:
    """
    Prints a formatted citation for each matched text in a dictionary.

    Args:
        final_text: A dictionary containing information about matched text passages,
                    with keys as text number and values as dictionaries containing
                    page number, cosine similarity score, chunk number (optional),
                    chunk text (optional), and page text (optional).
        print_top: A boolean flag indicating whether to only print the first citation (True) or all citations (False).
        chunk_text: A boolean flag indicating whether to print individual text chunks (True) or the entire page text (False).

    Returns:
        None (prints formatted citations to the console).
    """

    color = Color()

    # Iterate through the matched text citations
    for textno, text_dict in final_text.items():
        # Print the citation header
        print(color.RED + f"Citation {textno + 1}:", "Matched text:" + color.END)

        # Print the cosine similarity score
        print(color.BLUE + f"score: " + color.END, text_dict["cosine_score"])

        # Print the page number
        print(color.BLUE + f"page_number: " + color.END, text_dict["page_num"])
        
        # Print chunk number and chunk text
        print(color.BLUE + f"node_id: " + color.END, text_dict["node_id"])
        print(color.BLUE + f"node_text: " + color.END, text_dict["node_text"])
        print()

        # Only print the first citation if print_top is True
        if print_top and textno == 0:
            break


def sentence_df_triples_df(sentence_df: pd.DataFrame) -> pd.DataFrame:
    """
    Extract (subject, predicate, object) triples from the input sentence DataFrame
    INPUT: sentence_df: a DataFrame ('sent_id', 'node_id', 'course_material_type', 
                                     'course_material_week', 'sent_text')
    OUTPUT: triple_df: a DataFrame (triple_id, sent_id, course_material_type, course_material_week,
                                    triples_to_process)
    """

    model = genai.GenerativeModel('gemini-pro')

    count = 0

    dict_list = []

    for idx, row in tqdm(sentence_df.iterrows(), total=len(sentence_df)):
        if count < len(sentence_df) + 1:
            count += 1  
            dict_list.append(sentence_triple_dict_list(row, model))
        else:
            break

    return pd.DataFrame(dict_list)


def sentence_triple_dict_list(row: pd.Series, model) -> dict:
    """
    Extract (subject, predicate, object) triples from a row of a sentence dataframe
    INPUT: row: a row with the following columns: ('sent_id', 'node_id', 'course_material_type', 
           'course_material_week', 'sent_text')
           model: llm model
    OUTPUT: a list of dictionaries each of which has the following keys: triple_id, sent_id, 
            course_material_type, course_material_week, triples_to_process
    """

    triple_extraction_prompt = '''
            Please perform structured triple extraction on the given text enclosed within the 
            three backticks. 
            Convert the text into a set of (subject, predicate, object) triples. 
            Treat a math expression or a block of programming statements as a single concept.
            Use the previous extraction text and results as context.
            Correct misspells and syntactic errors.
            Don't summarize. Don't rewrite the original text. Don't decode the original text.
            Output the results as a set of ("subject":extracted subject, "predicate":extracted predicate, 
            "object":extracted object). Don't add extra explanation to the results.
            TEXT: ```{}```
            '''

    asent = row['sent_text']
    #print(asent)
    
    msg = triple_extraction_prompt.format(asent)

    
    response = model.generate_content(
        msg
    )

    #print(response.text)

    pattern = r'\{([^}]+)\}|\(([^)]+)\)'

    #response_text =  response.text.encode("ascii", "ignore").decode(
    #        "utf-8", "ignore"
    #    )

    response_text = response.text
    
    matches = re.findall(pattern, response_text)

    # Flatten the list of tuples and filter out empty matches
    text_to_process = [ "{" + match[0].strip() + "}" if match[0] 
                       else "{" + match[1].strip() + "}" for match in matches if match[0] or match[1]]
    
    #print(text_to_process)
    
    tri_dict = {}

    tri_dict['triple_id'] = row['sent_id'] + "_triples"
    tri_dict['sent_id'] = row['sent_id']
    tri_dict['course_material_type'] = row['course_material_type']
    tri_dict['course_material_week'] = row['course_material_week']
            
    tri_dict['triples_to_process'] = text_to_process
    
    return tri_dict
    


def split_nodes_sentences_df(nodes: List[llama_index.schema.TextNode]) -> pd.DataFrame:
    """
    split the text of each node into sentences by spacy
    """

    recs = []

    nlp = spacy.load('en_core_web_sm')

    for node in nodes:
        dict_list = split_nodeText_sentences_dict_list(nlp, node)

        recs.extend(dict_list)

    return pd.DataFrame(recs)
    

def split_nodeText_sentences_dict_list(nlp: Any, node: llama_index.schema.TextNode) -> list:
    """
    split the text of the given TextNode into sentences
    INPUT:  nlp: the spacy model
            node: a TextNode
    OUTPUT: a list of dictionaries each of which contains the information for a sentence.
    """

    dict_list = []

    node_text = node.text
    text_doc = nlp(node_text)
    text_sentences = list(text_doc.sents)

    for idx, sent in enumerate(text_sentences):

        order = idx + 1 # the order of the sentence in the node
        
        sent_dict = {}
        sent_dict['sent_id'] = node.node_id + "_sent" + str(order)
        
        sent_dict['node_id'] = node.node_id
    
        mdict = node.metadata
    
        sent_dict['course_material_type'] = mdict['course_material_type']
        sent_dict['course_material_week'] = mdict['course_material_week']

        sent_dict['sent_text'] = sent

        dict_list.append(sent_dict)

    return dict_list


def text_keyconcepts(text:str, model:genai.GenerativeModel) -> str:
    """
    use gemini to generate a set of key learning concepts from the input text
    """

    prompt = '''
        You are an expert AI assistant trained on extracting key concepts from the text. 
        Please analyze the following material.
        Extract the key concepts that can be used to find related materials.
        Output the results as a list of key concepts only. Only keywords in the output list.
        No definitions. Separate the keywords by comma.
        TEXT: ```{}```
        '''
    
    msg = prompt.format(text)

    response = model.generate_content(
        msg
    )

    input_string = response.text
    
    items_list = [item.strip('-').strip() for item in re.split(r'[\n,]', input_string) if item]
    
    return items_list

def text_query_embedding(query:str):

    """
    Use Gemini to Embed the given query by the type of retrieval_query
    INPUT: query: str
    OUTPUT: embedding as a list of numbers
    """
    embedding = genai.embed_content(model="models/embedding-001",
                                content=query,
                                task_type="retrieval_query")

    return embedding['embedding']


def text_questions_answered(text:str, model:genai.GenerativeModel) -> str:
    """
    use gemini to extract a set of questions that can be answered by the input text
    """

    prompt = '''
        You are an expert AI assistant trained on creating a list of specific, 
        answerable questions that can be extracted from input text enclosed within the three backticks.
        Identify the most pertinent questions that could be asked based on its content. 
        Compose these questions in a clear and concise manner, ensuring they directly 
        align with the information presented in the text. Output the results in JSON format.
        TEXT: ```{}```
        '''
    
    msg = prompt.format(text)

    response = model.generate_content(
        msg
    )

    return response.text
    


def text_retrieval_document_embedding(text:str, title:str):

    """
    Use Gemini to Embed the given text and title by the type of retrieval_document
    INPUT: text: str
           title: str
    OUTPUT: embedding as a list of numbers
    """
    embedding = genai.embed_content(model="models/embedding-001",
                                content=text,
                                task_type="retrieval_document",
                                title=title)

    return embedding['embedding']


def text_semantic_triples(text:str, model:genai.GenerativeModel) -> str:
    """
    use gemini to extract a set of semantic triples from the input text
    """

    prompt = '''
        You are an expert AI assistant trained on extracting semantic triples from the given
        text enclosed within the three backticks.
        Genearate a set of (subject, predicate, object) triples for the identified relationships. 
        Correct misspells and syntactic errors.
        Don't summarize. Don't rewrite the original text. Don't decode the original text.
        Output the results as JSON format. Don't add extra explanation to the results.
        TEXT: ```{}```
        '''
    
    msg = prompt.format(text)

    response = model.generate_content(
        msg
    )

    return response.text
    


def text_summary(text:str, model:genai.GenerativeModel) -> str:
    """
    use gemini to generate a summary from the input text
    """

    prompt = '''
        You are an expert AI summarization assistant and ready to condense any text into a 
        clear and concise overview. Please help me summairze the text within the backticks below. 
        Please extract the key topics and concepts. Plus, please ensure there are no typos or 
        grammatical errors in the summary. The summary will be used as surrounding context of additional
        content to answer specific questions. 
        TEXT: ```{}```
        '''
    msg = prompt.format(text)

    response = model.generate_content(
        msg
    )

    return response.text