anyuanay commited on
Commit
8b77c99
·
verified ·
1 Parent(s): e30db3e

Update app.py

Browse files

mfcc classification

Files changed (1) hide show
  1. app.py +39 -1
app.py CHANGED
@@ -1,6 +1,44 @@
1
  import numpy as np
2
  import gradio as gr
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  def voice_classification(audio):
5
 
6
  # generate a random number between 0 and 1
@@ -13,4 +51,4 @@ def voice_classification(audio):
13
 
14
  return result
15
 
16
- gr.Interface(fn=voice_classification, inputs="audio", outputs="text").launch()
 
1
  import numpy as np
2
  import gradio as gr
3
 
4
+ import pickle
5
+ import librosa
6
+
7
+ from sklearn.linear_model import LogisticRegression
8
+
9
+ lr_model = LogisticRegression()
10
+
11
+ with open("./lr_model_mfcc.pkl", "rb") as f:
12
+ lr_model = pickle.load(f)
13
+
14
+ def extract_mfcc_gradio(audio):
15
+
16
+ sample_rate, y = audio
17
+
18
+ y = y.astype(np.float32)
19
+ y /= np.max(np.abs(y))
20
+
21
+ if y.ndim == 1:
22
+ data = y
23
+ else:
24
+ data = y[:, 0]
25
+
26
+ mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
27
+
28
+ return mfcc
29
+
30
+ def voice_mfcc_classification(audio):
31
+
32
+ mfcc = extract_mfcc_gradio(audio)
33
+
34
+ prediction = lr_model.predict([mfcc])
35
+
36
+ if prediction[0] == 0:
37
+ return "engaging"
38
+ else:
39
+ return "boring"
40
+
41
+
42
  def voice_classification(audio):
43
 
44
  # generate a random number between 0 and 1
 
51
 
52
  return result
53
 
54
+ gr.Interface(fn=voice_mfcc)classification, inputs="audio", outputs="text").launch()