Spaces:
Sleeping
Sleeping
Update app.py
Browse filesmfcc classification
app.py
CHANGED
@@ -1,6 +1,44 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def voice_classification(audio):
|
5 |
|
6 |
# generate a random number between 0 and 1
|
@@ -13,4 +51,4 @@ def voice_classification(audio):
|
|
13 |
|
14 |
return result
|
15 |
|
16 |
-
gr.Interface(fn=
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
|
4 |
+
import pickle
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
|
9 |
+
lr_model = LogisticRegression()
|
10 |
+
|
11 |
+
with open("./lr_model_mfcc.pkl", "rb") as f:
|
12 |
+
lr_model = pickle.load(f)
|
13 |
+
|
14 |
+
def extract_mfcc_gradio(audio):
|
15 |
+
|
16 |
+
sample_rate, y = audio
|
17 |
+
|
18 |
+
y = y.astype(np.float32)
|
19 |
+
y /= np.max(np.abs(y))
|
20 |
+
|
21 |
+
if y.ndim == 1:
|
22 |
+
data = y
|
23 |
+
else:
|
24 |
+
data = y[:, 0]
|
25 |
+
|
26 |
+
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
|
27 |
+
|
28 |
+
return mfcc
|
29 |
+
|
30 |
+
def voice_mfcc_classification(audio):
|
31 |
+
|
32 |
+
mfcc = extract_mfcc_gradio(audio)
|
33 |
+
|
34 |
+
prediction = lr_model.predict([mfcc])
|
35 |
+
|
36 |
+
if prediction[0] == 0:
|
37 |
+
return "engaging"
|
38 |
+
else:
|
39 |
+
return "boring"
|
40 |
+
|
41 |
+
|
42 |
def voice_classification(audio):
|
43 |
|
44 |
# generate a random number between 0 and 1
|
|
|
51 |
|
52 |
return result
|
53 |
|
54 |
+
gr.Interface(fn=voice_mfcc)classification, inputs="audio", outputs="text").launch()
|