anzorq commited on
Commit
73696f4
·
1 Parent(s): d40ec63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -81
app.py CHANGED
@@ -1,76 +1,68 @@
1
  from diffusers import StableDiffusionPipeline
2
  from diffusers import StableDiffusionImg2ImgPipeline
3
- from diffusers import AutoencoderKL, UNet2DConditionModel
4
  import gradio as gr
5
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  models = [
8
- "nitrosocke/Arcane-Diffusion",
9
- "nitrosocke/archer-diffusion",
10
- "nitrosocke/elden-ring-diffusion",
11
- "nitrosocke/spider-verse-diffusion",
12
- "nitrosocke/modern-disney-diffusion",
13
- "hakurei/waifu-diffusion",
14
- "lambdalabs/sd-pokemon-diffusers",
15
- "yuk/fuyuko-waifu-diffusion",
16
- "AstraliteHeart/pony-diffusion",
17
- "nousr/robo-diffusion",
18
- "DGSpitzer/Cyberpunk-Anime-Diffusion",
19
- "sd-dreambooth-library/herge-style"
 
20
  ]
21
 
22
- prompt_prefixes = {
23
- models[0]: "arcane style ",
24
- models[1]: "archer style ",
25
- models[2]: "elden ring style ",
26
- models[3]: "spiderverse style ",
27
- models[4]: "modern disney style ",
28
- models[5]: "",
29
- models[6]: "",
30
- models[7]: "",
31
- models[8]: "",
32
- models[9]: "",
33
- models[10]: "dgs illustration style ",
34
- models[11]: "herge_style ",
35
- }
36
-
37
  current_model = models[0]
38
- pipes = []
39
- vae = AutoencoderKL.from_pretrained(current_model, subfolder="vae", torch_dtype=torch.float16)
40
- for model in models:
41
- unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
42
- pipe = StableDiffusionPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)
43
- pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)
44
- pipes.append({"name":model, "pipeline":pipe, "pipeline_i2i":pipe_i2i})
45
 
46
 
47
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
48
 
49
- def inference(model, img, strength, prompt, neg_prompt, guidance, steps, width, height, seed):
50
 
51
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
52
 
53
  if img is not None:
54
- return img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
55
  else:
56
- return txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator)
57
 
58
- def txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator=None):
59
 
60
  global current_model
61
  global pipe
62
- if model != current_model:
63
- current_model = model
64
- pipe = pipe.to("cpu")
65
-
66
- for pipe_dict in pipes:
67
- if(pipe_dict["name"] == current_model):
68
- pipe = pipe_dict["pipeline"]
69
-
70
- if torch.cuda.is_available():
71
- pipe = pipe.to("cuda")
72
-
73
- prompt = prompt_prefixes[current_model] + prompt
74
  results = pipe(
75
  prompt,
76
  negative_prompt=neg_prompt,
@@ -87,19 +79,18 @@ def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
87
 
88
  global current_model
89
  global pipe
90
- if model != current_model:
91
- current_model = model
92
- pipe = pipe.to("cpu")
 
 
 
93
 
94
- for pipe_dict in pipes:
95
- if(pipe_dict["name"] == current_model):
96
- pipe = pipe_dict["pipeline_i2i"]
97
-
98
- if torch.cuda.is_available():
99
- pipe = pipe.to("cuda")
100
-
101
- prompt = prompt_prefixes[current_model] + prompt
102
- ratio = min(height / img.height, width / img.width)
103
  img = img.resize((int(img.width * ratio), int(img.height * ratio)))
104
  results = pipe(
105
  prompt,
@@ -115,7 +106,6 @@ def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
115
  image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
116
  return image
117
 
118
-
119
  css = """
120
  <style>
121
  .finetuned-diffusion-div {
@@ -144,7 +134,7 @@ css = """
144
  """
145
  with gr.Blocks(css=css) as demo:
146
  gr.HTML(
147
- """
148
  <div class="finetuned-diffusion-div">
149
  <div>
150
  <h1>Finetuned Diffusion</h1>
@@ -152,26 +142,29 @@ with gr.Blocks(css=css) as demo:
152
  <p>
153
  Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
154
  <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
 
 
 
155
  </p>
156
  </div>
157
  """
158
  )
 
159
  with gr.Row():
160
 
161
  with gr.Column():
162
- model = gr.Dropdown(label="Model", choices=models, value=models[0])
163
  prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
164
  run = gr.Button(value="Run")
165
- gr.Markdown(f"Running on: {device}")
166
-
167
- with gr.Tab("Options"):
168
 
 
169
  neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
170
  guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
171
- steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
172
- width = gr.Slider(label="Width", value=512, maximum=1024, minimum=64)
173
- height = gr.Slider(label="Height", value=512, maximum=1024, minimum=64)
174
  seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
 
175
  with gr.Tab("Image to image"):
176
  image = gr.Image(label="Image", height=256, tool="editor", type="pil")
177
  strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
@@ -179,16 +172,18 @@ with gr.Blocks(css=css) as demo:
179
  with gr.Column():
180
  image_out = gr.Image(height=512)
181
 
182
- inputs = [model, image, strength, prompt, neg_prompt, guidance, steps, width, height, seed]
183
  prompt.submit(inference, inputs=inputs, outputs=image_out)
184
  run.click(inference, inputs=inputs, outputs=image_out)
 
185
  gr.Examples([
186
- [models[0], "jason bateman disassembling the demon core", 7.5, 50],
187
- [models[3], "portrait of dwayne johnson", 7.0, 75],
188
- [models[4], "portrait of a beautiful alyx vance half life", 10, 50],
189
- [models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
190
- [models[4], "fantasy portrait painting, digital art", 4, 30],
191
- ], [model, prompt, guidance, steps], image_out, img_to_img, cache_examples=False)
 
192
  gr.Markdown('''
193
  Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
194
  Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
@@ -196,5 +191,6 @@ with gr.Blocks(css=css) as demo:
196
  ![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
197
  ''')
198
 
199
- demo.queue()
200
- demo.launch()
 
 
1
  from diffusers import StableDiffusionPipeline
2
  from diffusers import StableDiffusionImg2ImgPipeline
 
3
  import gradio as gr
4
  import torch
5
+ from PIL import Image
6
+ import utils
7
+
8
+ is_colab = utils.is_google_colab()
9
+
10
+ max_width = 832
11
+ max_height = 832
12
+
13
+ class Model:
14
+ def __init__(self, name, path, prefix):
15
+ self.name = name
16
+ self.path = path
17
+ self.prefix = prefix
18
 
19
  models = [
20
+ Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
21
+ Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
22
+ Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
23
+ Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
24
+ Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style "),
25
+ Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
26
+ Model("Waifu", "hakurei/waifu-diffusion", ""),
27
+ Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
28
+ Model("Fuyuko Waifu", "yuk/fuyuko-waifu-diffusion", ""),
29
+ Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
30
+ Model("Robo Diffusion", "nousr/robo-diffusion", ""),
31
+ Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
32
+ Model("Hergé Style", "sd-dreambooth-library/herge-style", "herge_style "),
33
  ]
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  current_model = models[0]
36
+ pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
37
+ if torch.cuda.is_available():
38
+ pipe = pipe.to("cuda")
 
 
 
 
39
 
40
 
41
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
42
 
43
+ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
44
 
45
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
46
 
47
  if img is not None:
48
+ return img_to_img(model_name, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
49
  else:
50
+ return txt_to_img(model_name, prompt, neg_prompt, guidance, steps, width, height, generator)
51
 
52
+ def txt_to_img(model_name, prompt, neg_prompt, guidance, steps, width, height, generator=None):
53
 
54
  global current_model
55
  global pipe
56
+ if model_name != current_model.name:
57
+ for model in models:
58
+ if model.name == model_name:
59
+ current_model = model
60
+
61
+ pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
62
+ if torch.cuda.is_available():
63
+ pipe = pipe.to("cuda")
64
+
65
+ prompt = current_model.prefix + prompt
 
 
66
  results = pipe(
67
  prompt,
68
  negative_prompt=neg_prompt,
 
79
 
80
  global current_model
81
  global pipe
82
+ if model_name != current_model.name:
83
+ for model in models:
84
+ if model.name == model_name:
85
+ current_model = model
86
+
87
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
88
 
89
+ if torch.cuda.is_available():
90
+ pipe = pipe.to("cuda")
91
+
92
+ prompt = current_model.prefix + prompt
93
+ ratio = min(max_height / img.height, max_width / img.width)
 
 
 
 
94
  img = img.resize((int(img.width * ratio), int(img.height * ratio)))
95
  results = pipe(
96
  prompt,
 
106
  image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
107
  return image
108
 
 
109
  css = """
110
  <style>
111
  .finetuned-diffusion-div {
 
134
  """
135
  with gr.Blocks(css=css) as demo:
136
  gr.HTML(
137
+ f"""
138
  <div class="finetuned-diffusion-div">
139
  <div>
140
  <h1>Finetuned Diffusion</h1>
 
142
  <p>
143
  Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
144
  <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
145
+ </p> <br>
146
+ <p>
147
+ Running on <b>{device}</b>
148
  </p>
149
  </div>
150
  """
151
  )
152
+ # gr.Markdown(f"Running on: {device}", elem_id="markdown_device")
153
  with gr.Row():
154
 
155
  with gr.Column():
156
+ model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=models[0].name)
157
  prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
158
  run = gr.Button(value="Run")
 
 
 
159
 
160
+ with gr.Tab("Options"):
161
  neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
162
  guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
163
+ steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2, step=1)
164
+ width = gr.Slider(label="Width", value=512, maximum=max_width, minimum=64, step=8)
165
+ height = gr.Slider(label="Height", value=512, maximum=max_height, minimum=64, step=8)
166
  seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
167
+
168
  with gr.Tab("Image to image"):
169
  image = gr.Image(label="Image", height=256, tool="editor", type="pil")
170
  strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
 
172
  with gr.Column():
173
  image_out = gr.Image(height=512)
174
 
175
+ inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
176
  prompt.submit(inference, inputs=inputs, outputs=image_out)
177
  run.click(inference, inputs=inputs, outputs=image_out)
178
+
179
  gr.Examples([
180
+ [models[0].name, "jason bateman disassembling the demon core", 7.5, 50],
181
+ [models[3].name, "portrait of dwayne johnson", 7.0, 75],
182
+ [models[4].name, "portrait of a beautiful alyx vance half life", 10, 50],
183
+ [models[5].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
184
+ [models[4].name, "fantasy portrait painting, digital art", 4.0, 30],
185
+ ], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available())
186
+
187
  gr.Markdown('''
188
  Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
189
  Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
 
191
  ![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
192
  ''')
193
 
194
+ if not is_colab:
195
+ demo.queue()
196
+ demo.launch(debug=is_colab)