anzorq commited on
Commit
7c50a0f
·
1 Parent(s): d7673a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -64,18 +64,19 @@ if is_colab:
64
  pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
65
 
66
  else: # download all models
67
- print(f"{datetime.datetime.now()} Downloading vae...")
68
- vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
69
- for model in models:
70
- try:
71
- print(f"{datetime.datetime.now()} Downloading {model.name} model...")
72
- unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
73
- model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
74
- model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
75
- except Exception as e:
76
- print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
77
- models.remove(model)
78
- pipe = models[0].pipe_t2i
 
79
 
80
  if torch.cuda.is_available():
81
  pipe = pipe.to("cuda")
@@ -130,8 +131,9 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
130
  if is_colab or current_model == custom_model:
131
  pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
132
  else:
133
- pipe = pipe.to("cpu")
134
- pipe = current_model.pipe_t2i
 
135
 
136
  if torch.cuda.is_available():
137
  pipe = pipe.to("cuda")
@@ -163,8 +165,9 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
163
  if is_colab or current_model == custom_model:
164
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
165
  else:
166
- pipe = pipe.to("cpu")
167
- pipe = current_model.pipe_i2i
 
168
 
169
  if torch.cuda.is_available():
170
  pipe = pipe.to("cuda")
 
64
  pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
65
 
66
  else: # download all models
67
+ pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
68
+ # print(f"{datetime.datetime.now()} Downloading vae...")
69
+ # vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
70
+ # for model in models:
71
+ # try:
72
+ # print(f"{datetime.datetime.now()} Downloading {model.name} model...")
73
+ # unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
74
+ # model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
75
+ # model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
76
+ # except Exception as e:
77
+ # print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
78
+ # models.remove(model)
79
+ # pipe = models[0].pipe_t2i
80
 
81
  if torch.cuda.is_available():
82
  pipe = pipe.to("cuda")
 
131
  if is_colab or current_model == custom_model:
132
  pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
133
  else:
134
+ pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
135
+ # pipe = pipe.to("cpu")
136
+ # pipe = current_model.pipe_t2i
137
 
138
  if torch.cuda.is_available():
139
  pipe = pipe.to("cuda")
 
165
  if is_colab or current_model == custom_model:
166
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
167
  else:
168
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
169
+ # pipe = pipe.to("cpu")
170
+ # pipe = current_model.pipe_i2i
171
 
172
  if torch.cuda.is_available():
173
  pipe = pipe.to("cuda")