from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline import gradio as gr import torch models = [ "nitrosocke/Arcane-Diffusion", "nitrosocke/archer-diffusion", "nitrosocke/elden-ring-diffusion", "nitrosocke/spider-verse-diffusion", "nitrosocke/modern-disney-diffusion", "hakurei/waifu-diffusion", "lambdalabs/sd-pokemon-diffusers", "yuk/fuyuko-waifu-diffusion", "AstraliteHeart/pony-diffusion", "nousr/robo-diffusion", "DGSpitzer/Cyberpunk-Anime-Diffusion", "sd-dreambooth-library/herge-style" ] prompt_prefixes = { models[0]: "arcane style ", models[1]: "archer style ", models[2]: "elden ring style ", models[3]: "spiderverse style ", models[4]: "modern disney style ", models[5]: "", models[6]: "", models[7]: "", models[8]: "", models[9]: "", models[10]: "dgs illustration style ", models[11]: "herge_style ", } current_model = models[0] pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16) if torch.cuda.is_available(): pipe = pipe.to("cuda") device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def inference(model, img, strength, prompt, neg_prompt, guidance, steps, width, height, seed): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None if img is not None: return txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) else: return img_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator) def img_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator=None): global current_model global pipe if model != current_model: current_model = model pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16) if torch.cuda.is_available(): pipe = pipe.to("cuda") prompt = prompt_prefixes[current_model] + prompt image = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=int(steps), guidance_scale=guidance, width=width, height=height, generator=generator).images[0] return image def txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): global current_model global pipe if model != current_model: current_model = model pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model, torch_dtype=torch.float16) if torch.cuda.is_available(): pipe = pipe.to("cuda") prompt = prompt_prefixes[current_model] + prompt ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio))) image = pipe( prompt, negative_prompt=neg_prompt, init_image=img, num_inference_steps=int(steps), strength=strength, guidance_scale=guidance, width=width, height=height, generator=generator).images[0] return image css = """ """ with gr.Blocks(css=css) as demo: gr.HTML( """
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles:
Arcane, Archer, Elden Ring, Spiderverse, Modern Disney, Waifu, Pokemon, Fuyuko Waifu, Pony, Hergé (Tintin), Robo, Cyberpunk Anime