anzorq commited on
Commit
9148420
Β·
1 Parent(s): e7a6f30

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +227 -0
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import torch
3
+
4
+ from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
5
+ from point_e.diffusion.sampler import PointCloudSampler
6
+ from point_e.models.download import load_checkpoint
7
+ from point_e.models.configs import MODEL_CONFIGS, model_from_config
8
+ from point_e.util.plotting import plot_point_cloud
9
+ from point_e.util.pc_to_mesh import marching_cubes_mesh
10
+
11
+ import skimage.measure
12
+
13
+ from pyntcloud import PyntCloud
14
+ import matplotlib.colors
15
+ import plotly.graph_objs as go
16
+
17
+ import trimesh
18
+
19
+ import gradio as gr
20
+
21
+
22
+ state = ""
23
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
24
+
25
+ def set_state(s):
26
+ print(s)
27
+ global state
28
+ state = s
29
+
30
+ def get_state():
31
+ return state
32
+
33
+ set_state('Creating txt2mesh model...')
34
+ t2m_name = 'base40M-textvec' # 'base40M'
35
+ t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
36
+ t2m_model.eval()
37
+ base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])
38
+
39
+ set_state('Downloading txt2mesh checkpoint...')
40
+ t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
41
+
42
+
43
+ def load_img2mesh_model(model_name):
44
+ set_state(f'Creating img2mesh model {model_name}...')
45
+ i2m_name = model_name
46
+ i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
47
+ i2m_model.eval()
48
+ base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])
49
+
50
+ set_state(f'Downloading img2mesh checkpoint {model_name}...')
51
+ i2m_model.load_state_dict(load_checkpoint(i2m_name, device))
52
+
53
+ return i2m_model, base_diffusion_i2m
54
+
55
+ img2mesh_model_name = 'base40M' #'base300M' #'base1B'
56
+ img2mesh_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name)
57
+
58
+
59
+ set_state('Creating upsample model...')
60
+ upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
61
+ upsampler_model.eval()
62
+ upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
63
+
64
+ set_state('Downloading upsampler checkpoint...')
65
+ upsampler_model.load_state_dict(load_checkpoint('upsample', device))
66
+
67
+ set_state('Creating SDF model...')
68
+ sdf_name = 'sdf'
69
+ sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
70
+ sdf_model.eval()
71
+
72
+ set_state('Loading SDF model...')
73
+ sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
74
+
75
+ set_state('')
76
+
77
+ def get_sampler(model_name, txt2obj, guidance_scale):
78
+
79
+ global img2mesh_model_name
80
+ global base_diffusion_i2m
81
+ global img2mesh_model
82
+ if model_name != img2mesh_model_name:
83
+ img2mesh_model_name = model_name
84
+ img2mesh_model, base_diffusion_i2m = load_img2mesh_model(model_name)
85
+
86
+ return PointCloudSampler(
87
+ device=device,
88
+ models=[t2m_model, upsampler_model],
89
+ diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
90
+ num_points=[1024, 4096 - 1024],
91
+ aux_channels=['R', 'G', 'B'],
92
+ guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
93
+ model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
94
+ )
95
+
96
+ def generate(model_name, input, guidance_scale, grid_size):
97
+
98
+ set_state('Entered generate function...')
99
+
100
+ if isinstance(input, Image.Image):
101
+ input = prepare_img(input)
102
+
103
+ # if input is a string, it's a text prompt
104
+ sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)
105
+
106
+ # Produce a sample from the model.
107
+ set_state('Sampling...')
108
+ samples = None
109
+ kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
110
+ for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
111
+ samples = x
112
+
113
+ set_state('Converting to point cloud...')
114
+ pc = sampler.output_to_point_clouds(samples)[0]
115
+
116
+ set_state('Converting to mesh...')
117
+ save_ply(pc, 'output.ply', grid_size)
118
+
119
+ set_state('')
120
+
121
+ return pc_to_plot(pc), ply_to_obj('output.ply', 'output.obj'), gr.update(value='output.obj', visible=True)
122
+
123
+ def prepare_img(img):
124
+
125
+ w, h = img.size
126
+ if w > h:
127
+ img = img.crop(((w-h)/2, 0, (w+h)/2, h))
128
+ else:
129
+ img = img.crop((0, (h-w)/2, w, (h+w)/2))
130
+
131
+ # resize to 256x256
132
+ img = img.resize((256, 256))
133
+
134
+ return img
135
+
136
+ def pc_to_plot(pc):
137
+
138
+ return go.Figure(
139
+ data=[
140
+ go.Scatter3d(
141
+ x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
142
+ mode='markers',
143
+ marker=dict(
144
+ size=2,
145
+ color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
146
+ )
147
+ )
148
+ ],
149
+ layout=dict(
150
+ scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False))
151
+ ),
152
+ )
153
+
154
+ def ply_to_obj(ply_file, obj_file):
155
+ mesh = trimesh.load(ply_file)
156
+ mesh.export(obj_file)
157
+
158
+ return obj_file
159
+
160
+ def save_ply(pc, file_name, grid_size):
161
+
162
+ # Produce a mesh (with vertex colors)
163
+ mesh = marching_cubes_mesh(
164
+ pc=pc,
165
+ model=sdf_model,
166
+ batch_size=4096,
167
+ grid_size=grid_size, # increase to 128 for resolution used in evals
168
+ progress=True,
169
+ )
170
+
171
+ # Write the mesh to a PLY file to import into some other program.
172
+ with open(file_name, 'wb') as f:
173
+ mesh.write_ply(f)
174
+
175
+
176
+ with gr.Blocks() as app:
177
+ gr.Markdown("## Point-E text-to-3D Demo")
178
+ gr.Markdown("This is a demo for [Point-E: A System for Generating 3D Point Clouds from Complex Prompts](https://arxiv.org/abs/2212.08751) by OpenAI. Check out the [GitHub repo](https://github.com/openai/point-e) for more information.")
179
+
180
+ with gr.Row():
181
+ with gr.Column():
182
+ with gr.Tab("Text to 3D"):
183
+ prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot")
184
+ btn_generate_txt2obj = gr.Button(value="Generate")
185
+ with gr.Tab("Image to 3D"):
186
+ img = gr.Image(label="Image")
187
+ btn_generate_img2obj = gr.Button(value="Generate")
188
+ with gr.Accordion("Advanced settings", open=False):
189
+ dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M", "base1B"])
190
+ guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=1.0)
191
+ grid_size = gr.Slider(label="Grid size", value=32, minimum=16, maximum=128, step=16)
192
+
193
+ state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False)
194
+
195
+ with gr.Column():
196
+ plot = gr.Plot(label="Point cloud")
197
+ # btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
198
+ model_3d = gr.Model3D(value=None)
199
+ file_out = gr.File(label="Obj file", visible=False)
200
+
201
+
202
+
203
+ # inputs = [dropdown_models, prompt, img, guidance_scale, grid_size]
204
+ outputs = [plot, model_3d, file_out]
205
+
206
+ prompt.submit(generate, inputs=[dropdown_models, prompt, guidance_scale, grid_size], outputs=outputs)
207
+ btn_generate_txt2obj.click(generate, inputs=[dropdown_models, prompt, guidance_scale, grid_size], outputs=outputs)
208
+ btn_generate_img2obj.click(generate, inputs=[dropdown_models, img, guidance_scale, grid_size], outputs=outputs)
209
+ # btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out])
210
+
211
+ gr.HTML("""
212
+ <div style="border-top: 1px solid #303030;">
213
+ <br>
214
+ <p>Space by:<br>
215
+ <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
216
+ <a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br>
217
+ <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 35px !important;width: 120px !important;" ></a><br><br>
218
+ <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.point-e_demo" alt="visitors"></p>
219
+ </div>
220
+ """)
221
+
222
+ app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False)
223
+
224
+
225
+ app.queue()
226
+ # app.launch(debug=True, share=True, height=768)
227
+ app.launch(debug=True)