Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def save_embeddings(sentences, filename):
|
7 |
+
embeddings = model.encode(sentences, convert_to_tensor=True)
|
8 |
+
torch.save(embeddings, filename)
|
9 |
+
|
10 |
+
def load_embeddings(filename):
|
11 |
+
return torch.load(filename)
|
12 |
+
|
13 |
+
def preprocess_model_descriptions(file_path):
|
14 |
+
encodings = ['utf-8', 'latin-1', 'utf-16']
|
15 |
+
for encoding in encodings:
|
16 |
+
try:
|
17 |
+
df = pd.read_csv(file_path, sep='\t', header=None, names=['model_id', 'description'])
|
18 |
+
df.dropna(subset=['description'], inplace=True)
|
19 |
+
model_ids = df['model_id'].tolist()
|
20 |
+
descriptions = df['description'].tolist()
|
21 |
+
break
|
22 |
+
except UnicodeDecodeError:
|
23 |
+
continue
|
24 |
+
else:
|
25 |
+
raise UnicodeDecodeError("Unable to decode the file using the available encodings.")
|
26 |
+
|
27 |
+
return model_ids, descriptions
|
28 |
+
|
29 |
+
def perform_similarity_search(query_embeddings, embeddings, model_ids, descriptions, top_k=10):
|
30 |
+
cosine_scores = util.cos_sim(query_embeddings, embeddings)
|
31 |
+
similarity_scores = cosine_scores.tolist()
|
32 |
+
|
33 |
+
results = []
|
34 |
+
for i, query_embedding in enumerate(query_embeddings):
|
35 |
+
query_results = sorted(zip(model_ids, descriptions, similarity_scores[i]), key=lambda x: x[2], reverse=True)[:top_k]
|
36 |
+
results.extend(query_results)
|
37 |
+
|
38 |
+
return pd.DataFrame(results, columns=["model_id", "description", "score"])
|
39 |
+
|
40 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
41 |
+
|
42 |
+
model_ids, descriptions = preprocess_model_descriptions('model_descriptions.tsv')
|
43 |
+
embeddings = load_embeddings('embeddings_model_descriptions.pt')
|
44 |
+
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
input = gr.Textbox(label="Enter your query")
|
47 |
+
button = gr.Button(label="Search")
|
48 |
+
|
49 |
+
df_output = gr.Dataframe(label="Similarity Results", wrap=True)
|
50 |
+
|
51 |
+
def search(query):
|
52 |
+
query_embedding = model.encode([query], convert_to_tensor=True)
|
53 |
+
return perform_similarity_search(query_embedding, embeddings, model_ids, descriptions)
|
54 |
+
|
55 |
+
input.submit(search, inputs=input, outputs=df_output)
|
56 |
+
button.click(search, inputs=input, outputs=df_output)
|
57 |
+
|
58 |
+
demo.launch()
|