Update app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,13 @@ def save_embeddings(sentences, filename):
|
|
10 |
def load_embeddings(filename):
|
11 |
return torch.load(filename, map_location=torch.device('cpu'))
|
12 |
|
13 |
-
def
|
14 |
encodings = ['utf-8', 'latin-1', 'utf-16']
|
15 |
for encoding in encodings:
|
16 |
try:
|
17 |
-
df = pd.read_csv(file_path, sep='\t', header=None, names=['
|
18 |
df.dropna(subset=['description'], inplace=True)
|
19 |
-
|
20 |
descriptions = df['description'].tolist()
|
21 |
break
|
22 |
except UnicodeDecodeError:
|
@@ -24,22 +24,22 @@ def preprocess_model_descriptions(file_path):
|
|
24 |
else:
|
25 |
raise UnicodeDecodeError("Unable to decode the file using the available encodings.")
|
26 |
|
27 |
-
return
|
28 |
|
29 |
-
def perform_similarity_search(query_embeddings, embeddings,
|
30 |
cosine_scores = util.cos_sim(query_embeddings, embeddings)
|
31 |
similarity_scores = cosine_scores.tolist()
|
32 |
|
33 |
results = []
|
34 |
for i, query_embedding in enumerate(query_embeddings):
|
35 |
-
query_results = sorted(zip(
|
36 |
results.extend(query_results)
|
37 |
|
38 |
-
return pd.DataFrame(results, columns=["
|
39 |
|
40 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
41 |
|
42 |
-
|
43 |
embeddings = load_embeddings('embeddings_hf_spaces_descriptions.pt')
|
44 |
|
45 |
with gr.Blocks() as demo:
|
@@ -50,9 +50,8 @@ with gr.Blocks() as demo:
|
|
50 |
|
51 |
def search(query):
|
52 |
query_embedding = model.encode([query], convert_to_tensor=True)
|
53 |
-
return perform_similarity_search(query_embedding, embeddings,
|
54 |
|
55 |
input.submit(search, inputs=input, outputs=df_output)
|
56 |
-
button.click(search, inputs=input, outputs=df_output)
|
57 |
|
58 |
demo.launch()
|
|
|
10 |
def load_embeddings(filename):
|
11 |
return torch.load(filename, map_location=torch.device('cpu'))
|
12 |
|
13 |
+
def preprocess_space_descriptions(file_path):
|
14 |
encodings = ['utf-8', 'latin-1', 'utf-16']
|
15 |
for encoding in encodings:
|
16 |
try:
|
17 |
+
df = pd.read_csv(file_path, sep='\t', header=None, names=['space_id', 'description'])
|
18 |
df.dropna(subset=['description'], inplace=True)
|
19 |
+
space_ids = df['space_id'].tolist()
|
20 |
descriptions = df['description'].tolist()
|
21 |
break
|
22 |
except UnicodeDecodeError:
|
|
|
24 |
else:
|
25 |
raise UnicodeDecodeError("Unable to decode the file using the available encodings.")
|
26 |
|
27 |
+
return space_ids, descriptions
|
28 |
|
29 |
+
def perform_similarity_search(query_embeddings, embeddings, space_ids, descriptions, top_k=10):
|
30 |
cosine_scores = util.cos_sim(query_embeddings, embeddings)
|
31 |
similarity_scores = cosine_scores.tolist()
|
32 |
|
33 |
results = []
|
34 |
for i, query_embedding in enumerate(query_embeddings):
|
35 |
+
query_results = sorted(zip(space_ids, descriptions, similarity_scores[i]), key=lambda x: x[2], reverse=True)[:top_k]
|
36 |
results.extend(query_results)
|
37 |
|
38 |
+
return pd.DataFrame(results, columns=["space_id", "description", "score"])
|
39 |
|
40 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
41 |
|
42 |
+
space_ids, descriptions = preprocess_space_descriptions('hf_spaces_descriptions.tsv')
|
43 |
embeddings = load_embeddings('embeddings_hf_spaces_descriptions.pt')
|
44 |
|
45 |
with gr.Blocks() as demo:
|
|
|
50 |
|
51 |
def search(query):
|
52 |
query_embedding = model.encode([query], convert_to_tensor=True)
|
53 |
+
return perform_similarity_search(query_embedding, embeddings, space_ids, descriptions, top_k=num_results)
|
54 |
|
55 |
input.submit(search, inputs=input, outputs=df_output)
|
|
|
56 |
|
57 |
demo.launch()
|