Spaces:
Paused
Paused
File size: 6,020 Bytes
bd9805e a4d0b27 78b7b89 59eb871 78b7b89 a4d0b27 78b7b89 bf34975 59eb871 78b7b89 a4d0b27 78b7b89 f751f4e 78b7b89 59eb871 78b7b89 59eb871 78b7b89 f751f4e 78b7b89 59eb871 dfd6c72 ac0fe1d 59eb871 f751f4e 59eb871 a4d0b27 bd9805e 3e2e722 bd9805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
# src_lang="ru"
# tgt_lang="zu"
# # tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_safetensors=True)#, load_in_4bit=True, device_map="auto")
# model.to_bettertransformer()
# def translate(text, num_beams=4, num_return_sequences=4):
# inputs = tokenizer(text, return_tensors="pt")
# num_return_sequences = min(num_return_sequences, num_beams)
# translated_tokens = model.generate(
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
# )
# translations = []
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
# translations.append(translation)
# # result = {"input":text, "translations":translations}
# return text, translations
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from optimum.bettertransformer import BetterTransformer
import intel_extension_for_pytorch as ipex
from transformers.modeling_outputs import BaseModelOutput
import torch
model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
src_lang = "ru"
tgt_lang = "zu"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
# flash attention optimization
model = BetterTransformer.transform(model, keep_original_model=False)
# ipex optimization
model.eval()
model = ipex.optimize(model, dtype=torch.float, level="O1", conv_bn_folding=False, inplace=True)
# Get the encoder
encoder = model.get_encoder()
# Prepare an example input for the encoder
example_input_text = "Example text in Russian"
inputs_example = tokenizer(example_input_text, return_tensors="pt")
# Trace just the encoder with strict=False
scripted_encoder = torch.jit.trace(encoder, inputs_example['input_ids'], strict=False)
def translate(text, num_beams=4, num_return_sequences=4):
inputs = tokenizer(text, return_tensors="pt")
num_return_sequences = min(num_return_sequences, num_beams)
# Use the scripted encoder for the first step of inference
encoder_output_dict = scripted_encoder(inputs['input_ids'])
encoder_outputs = BaseModelOutput(last_hidden_state=encoder_output_dict['last_hidden_state'])
# Use the original, untraced model for the second step, passing the encoder's outputs as inputs
translated_tokens = model.generate(
encoder_outputs=encoder_outputs,
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
num_beams=num_beams,
num_return_sequences=num_return_sequences
)
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
return text, translations
output = gr.Textbox()
# with gr.Accordion("Advanced Options"):
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4)
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sentences", default=4)
title = "Russian-Circassian translator demo"
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>"
examples = [
["Мы идем домой"],
["Сегодня хорошая погода"],
["Дети играют во дворе"],
["We live in a big house"],
["Tu es une bonne personne."],
["أين تعيش؟"],
["Bir şeyler yapmak istiyorum."],
["– Если я его отпущу, то ты вовек не сможешь его поймать, – заявил Сосруко."],
["Как только старик ушел, Сатаней пошла к Саусырыко."],
["我永远不会放弃你。"],
["우리는 소치에 살고 있습니다."],
]
gr.Interface(
fn=translate,
inputs=["text", num_beams, num_return_sequences],
outputs=["text", output],
title=title,
# examples=examples,
article=article).launch()
# import gradio as gr
# title = "Русско-черкесский переводчик"
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below."
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""
# examples = [
# ["Мы идем домой"],
# ["Сегодня хорошая погода"],
# ["Дети играют во дворе"],
# ["We live in a big house"],
# ["Tu es une bonne personne."],
# ["أين تعيش؟"],
# ["Bir şeyler yapmak istiyorum."],
# ]
# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |