File size: 2,663 Bytes
a4d0b27
 
 
 
 
 
 
 
 
 
 
 
 
3e2e722
a4d0b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2e722
a4d0b27
41f680d
a4d0b27
3e2e722
a4d0b27
41f680d
 
 
 
 
 
 
a4d0b27
3e2e722
a4d0b27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# import gradio as gr

# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"  
# src_lang="ru" 
# tgt_lang="zu"

# tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path)

# def translate(text):
#   inputs = tokenizer(text, return_tensors="pt")

#   translated_tokens = model.generate(
#       **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=4, num_return_sequences=4
#   )

#   translations = []
#   for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
#       translations.append(translation)

#   return translations

# output = gr.outputs.Textbox()
# iface = gr.Interface(fn=translate, inputs="text", outputs=output)
# iface.launch()

import gradio as gr

title = "Русско-черкесский переводчик"
description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below."
article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""

examples = [
    ["Мы идем домой"],
    ["Сегодня хорошая погода"],
    ["Дети играют во дворе"],
    ["We live in a big house"],
    ["Tu es une bonne personne."],
    ["أين تعيش؟"],
    ["Bir şeyler yapmak istiyorum."],
]

gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch()