Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,663 Bytes
a4d0b27 3e2e722 a4d0b27 3e2e722 a4d0b27 41f680d a4d0b27 3e2e722 a4d0b27 41f680d a4d0b27 3e2e722 a4d0b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# import gradio as gr
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
# src_lang="ru"
# tgt_lang="zu"
# tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
# def translate(text):
# inputs = tokenizer(text, return_tensors="pt")
# translated_tokens = model.generate(
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=4, num_return_sequences=4
# )
# translations = []
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
# translations.append(translation)
# return translations
# output = gr.outputs.Textbox()
# iface = gr.Interface(fn=translate, inputs="text", outputs=output)
# iface.launch()
import gradio as gr
title = "Русско-черкесский переводчик"
description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below."
article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""
examples = [
["Мы идем домой"],
["Сегодня хорошая погода"],
["Дети играют во дворе"],
["We live in a big house"],
["Tu es une bonne personne."],
["أين تعيش؟"],
["Bir şeyler yapmak istiyorum."],
]
gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |