Spaces:
Runtime error
Runtime error
""" | |
Thanks to nateraw for making this scape happen! | |
This code has been mostly taken from https://huggingface.co/spaces/nateraw/animegan-v2-for-videos/tree/main | |
""" | |
import os | |
os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.3/ArcaneGANv0.3.jit") | |
import sys | |
from subprocess import call | |
def run_cmd(command): | |
try: | |
print(command) | |
call(command, shell=True) | |
except KeyboardInterrupt: | |
print("Process interrupted") | |
sys.exit(1) | |
print("⬇️ Installing latest gradio==2.4.7b9") | |
run_cmd("pip install --upgrade pip") | |
run_cmd('pip install gradio==2.4.7b9') | |
import gc | |
import math | |
import gradio as gr | |
import numpy as np | |
import torch | |
from encoded_video import EncodedVideo, write_video | |
from PIL import Image | |
from torchvision.transforms.functional import center_crop, to_tensor | |
print("🧠 Loading Model...") | |
model = torch.jit.load('ArcaneGANv0.3.jit').cuda().eval().half() | |
# This function is taken from pytorchvideo! | |
def uniform_temporal_subsample(x: torch.Tensor, num_samples: int, temporal_dim: int = -3) -> torch.Tensor: | |
""" | |
Uniformly subsamples num_samples indices from the temporal dimension of the video. | |
When num_samples is larger than the size of temporal dimension of the video, it | |
will sample frames based on nearest neighbor interpolation. | |
Args: | |
x (torch.Tensor): A video tensor with dimension larger than one with torch | |
tensor type includes int, long, float, complex, etc. | |
num_samples (int): The number of equispaced samples to be selected | |
temporal_dim (int): dimension of temporal to perform temporal subsample. | |
Returns: | |
An x-like Tensor with subsampled temporal dimension. | |
""" | |
t = x.shape[temporal_dim] | |
assert num_samples > 0 and t > 0 | |
# Sample by nearest neighbor interpolation if num_samples > t. | |
indices = torch.linspace(0, t - 1, num_samples) | |
indices = torch.clamp(indices, 0, t - 1).long() | |
return torch.index_select(x, temporal_dim, indices) | |
# This function is taken from pytorchvideo! | |
def short_side_scale( | |
x: torch.Tensor, | |
size: int, | |
interpolation: str = "bilinear", | |
) -> torch.Tensor: | |
""" | |
Determines the shorter spatial dim of the video (i.e. width or height) and scales | |
it to the given size. To maintain aspect ratio, the longer side is then scaled | |
accordingly. | |
Args: | |
x (torch.Tensor): A video tensor of shape (C, T, H, W) and type torch.float32. | |
size (int): The size the shorter side is scaled to. | |
interpolation (str): Algorithm used for upsampling, | |
options: nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area' | |
Returns: | |
An x-like Tensor with scaled spatial dims. | |
""" | |
assert len(x.shape) == 4 | |
assert x.dtype == torch.float32 | |
c, t, h, w = x.shape | |
if w < h: | |
new_h = int(math.floor((float(h) / w) * size)) | |
new_w = size | |
else: | |
new_h = size | |
new_w = int(math.floor((float(w) / h) * size)) | |
return torch.nn.functional.interpolate(x, size=(new_h, new_w), mode=interpolation, align_corners=False) | |
means = [0.485, 0.456, 0.406] | |
stds = [0.229, 0.224, 0.225] | |
from torchvision import transforms | |
norm = transforms.Normalize(means,stds) | |
norms = torch.tensor(means)[None,:,None,None].cuda() | |
stds = torch.tensor(stds)[None,:,None,None].cuda() | |
def inference_step(vid, start_sec, duration, out_fps): | |
clip = vid.get_clip(start_sec, start_sec + duration) | |
video_arr = torch.from_numpy(clip['video']).permute(3, 0, 1, 2) | |
audio_arr = np.expand_dims(clip['audio'], 0) | |
audio_fps = None if not vid._has_audio else vid._container.streams.audio[0].sample_rate | |
x = uniform_temporal_subsample(video_arr, duration * out_fps) | |
x = center_crop(short_side_scale(x, 512), 512) | |
x /= 255. | |
x = x.permute(1, 0, 2, 3) | |
x = norm(x) | |
with torch.no_grad(): | |
output = model(x.to('cuda').half()) | |
output = (output * stds + norms).clip(0, 1) * 255. | |
output_video = output.permute(0, 2, 3, 1).float().detach().cpu().numpy() | |
return output_video, audio_arr, out_fps, audio_fps | |
def predict_fn(filepath, start_sec, duration, out_fps): | |
# out_fps=12 | |
vid = EncodedVideo.from_path(filepath) | |
for i in range(duration): | |
video, audio, fps, audio_fps = inference_step( | |
vid = vid, | |
start_sec = i + start_sec, | |
duration = 1, | |
out_fps = out_fps | |
) | |
gc.collect() | |
if i == 0: | |
video_all = video | |
audio_all = audio | |
else: | |
video_all = np.concatenate((video_all, video)) | |
audio_all = np.hstack((audio_all, audio)) | |
write_video( | |
'out.mp4', | |
video_all, | |
fps=fps, | |
audio_array=audio_all, | |
audio_fps=audio_fps, | |
audio_codec='aac' | |
) | |
del video_all | |
del audio_all | |
return 'out.mp4' | |
title = "ArcaneGAN" | |
description = "Gradio demo for ArcaneGAN, video to Arcane style. To use it, simply upload your video, or click one of the examples to load them. Follow <a href='https://twitter.com/devdef' target='_blank'>Alex Spirin</a> for more info and updates." | |
article = "<div style='text-align: center;'>ArcaneGan by <a href='https://twitter.com/devdef' target='_blank'>Alex Spirin</a> | <a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a> | <center><img src='https://visitor-badge.glitch.me/badge?page_id=sxela_arcanegan_video_hf' alt='visitor badge'></center></div>" | |
gr.Interface( | |
predict_fn, | |
inputs=[gr.inputs.Video(), gr.inputs.Slider(minimum=0, maximum=300, step=1, default=0), gr.inputs.Slider(minimum=1, maximum=10, step=1, default=2), gr.inputs.Slider(minimum=12, maximum=30, step=6, default=24)], | |
outputs=gr.outputs.Video(), | |
title='ArcaneGAN On Videos', | |
description="Applying ArcaneGAN to frame from video clips", | |
article = article, | |
enable_queue=True, | |
examples=[ | |
['obama.webm', 23, 10, 30], | |
], | |
allow_flagging=False | |
).launch() | |