Spaces:
Runtime error
Runtime error
Apoorv Saxena
commited on
Commit
·
7a1c034
1
Parent(s):
5312aec
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,70 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
|
|
|
|
5 |
|
6 |
+
def getScores(ids, scores, pad_token_id):
|
7 |
+
"""get sequence scores from model.generate output"""
|
8 |
+
scores = torch.stack(scores, dim=1)
|
9 |
+
log_probs = torch.log_softmax(scores, dim=2)
|
10 |
+
# remove start token
|
11 |
+
ids = ids[:,1:]
|
12 |
+
# gather needed probs
|
13 |
+
x = ids.unsqueeze(-1).expand(log_probs.shape)
|
14 |
+
needed_logits = torch.gather(log_probs, 2, x)
|
15 |
+
final_logits = needed_logits[:, :, 0]
|
16 |
+
padded_mask = (ids == pad_token_id)
|
17 |
+
final_logits[padded_mask] = 0
|
18 |
+
final_scores = final_logits.sum(dim=-1)
|
19 |
+
return final_scores.cpu().detach().numpy()
|
20 |
+
|
21 |
+
def topkSample(input, model, tokenizer,
|
22 |
+
num_samples=5,
|
23 |
+
num_beams=1,
|
24 |
+
max_output_length=30):
|
25 |
+
tokenized = tokenizer(input, return_tensors="pt")
|
26 |
+
out = model.generate(**tokenized,
|
27 |
+
do_sample=True,
|
28 |
+
num_return_sequences = num_samples,
|
29 |
+
num_beams = num_beams,
|
30 |
+
eos_token_id = tokenizer.eos_token_id,
|
31 |
+
pad_token_id = tokenizer.pad_token_id,
|
32 |
+
output_scores = True,
|
33 |
+
return_dict_in_generate=True,
|
34 |
+
max_length=max_output_length,)
|
35 |
+
out_tokens = out.sequences
|
36 |
+
out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True)
|
37 |
+
out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id)
|
38 |
+
|
39 |
+
pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)]
|
40 |
+
sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True)
|
41 |
+
return sorted_pair_list
|
42 |
+
|
43 |
+
def greedyPredict(input, model, tokenizer):
|
44 |
+
input_ids = tokenizer([input], return_tensors="pt").input_ids
|
45 |
+
out_tokens = model.generate(input_ids)
|
46 |
+
out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True)
|
47 |
+
return out_str[0]
|
48 |
+
|
49 |
+
def predict_tail(entity, relation):
|
50 |
+
global model, tokenizer
|
51 |
+
input = entity + "| " + relation
|
52 |
+
out = topkSample(input, model, tokenizer, num_samples=5)
|
53 |
+
out_dict = {}
|
54 |
+
for k, v in out:
|
55 |
+
out_dict[k] = np.exp(v).item()
|
56 |
+
return out_dict
|
57 |
+
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-wikikg90mv2")
|
60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-base-wikikg90mv2")
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
ent_input = gradio.inputs.Textbox(lines=1, default="World War II")
|
65 |
+
rel_input = gradio.inputs.Textbox(lines=1, default="followed by")
|
66 |
+
output = gradio.outputs.Label()
|
67 |
+
|
68 |
+
|
69 |
+
iface = gr.Interface(fn=predict_tail, inputs=[ent_input, rel_input], outputs=output)
|
70 |
+
iface.launch()
|