Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,91 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
-
from langchain_openai import OpenAI
|
4 |
-
from transformers import pipeline
|
5 |
-
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
6 |
|
|
|
|
|
|
|
7 |
import os
|
8 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Load image captioning model
|
15 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
16 |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
17 |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
18 |
-
|
19 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
20 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
21 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
22 |
-
|
23 |
-
|
24 |
def generate_story(image, theme, genre, word_count):
|
25 |
try:
|
26 |
# Preprocess the image
|
@@ -35,16 +100,15 @@ def generate_story(image, theme, genre, word_count):
|
|
35 |
|
36 |
# Generate story based on the caption
|
37 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
38 |
-
|
39 |
-
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
|
40 |
-
story = llm.invoke(story_prompt)
|
41 |
-
# story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
|
42 |
|
43 |
return caption_text, story
|
44 |
except Exception as e:
|
45 |
return f"An error occurred during inference: {str(e)}"
|
|
|
46 |
|
47 |
|
|
|
48 |
|
49 |
# Gradio interface
|
50 |
input_image = gr.Image(label="Select Image",type="pil")
|
@@ -64,4 +128,4 @@ gr.Interface(
|
|
64 |
examples = examples,
|
65 |
title="Image to Story Generator",
|
66 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
67 |
-
).launch()
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
# Using openai models ---------------------------------------------------------
|
4 |
+
|
5 |
+
from langchain_openai import OpenAI
|
6 |
import os
|
7 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
+
import requests
|
12 |
+
import json
|
13 |
+
|
14 |
+
width = 800
|
15 |
+
|
16 |
+
|
17 |
+
# Function to call the API for image and get the response
|
18 |
+
def get_response_for_image(openai_api_key, image):
|
19 |
+
base64_image = base64.b64encode(image).decode('utf-8')
|
20 |
+
headers = {
|
21 |
+
"Content-Type": "application/json",
|
22 |
+
"Authorization": f"Bearer {openai_api_key}"
|
23 |
+
}
|
24 |
+
payload = {
|
25 |
+
"model": "gpt-4o",
|
26 |
+
"messages": [
|
27 |
+
{
|
28 |
+
"role": "user",
|
29 |
+
"content": [
|
30 |
+
{
|
31 |
+
"type": "text",
|
32 |
+
"text": '''Describe or caption the image within 20 words. Output in json format with key: Description'''
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"type": "image_url",
|
36 |
+
"image_url": {
|
37 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
38 |
+
"detail": "low"
|
39 |
+
}
|
40 |
+
}
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"max_tokens": 200
|
45 |
+
}
|
46 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
47 |
+
return response.json()
|
48 |
+
|
49 |
+
|
50 |
+
def generate_story(image, theme, genre, word_count):
|
51 |
+
try:
|
52 |
+
# Convert PIL image to bytes-like format
|
53 |
+
with io.BytesIO() as output:
|
54 |
+
image.save(output, format="JPEG")
|
55 |
+
image_bytes = output.getvalue()
|
56 |
+
|
57 |
+
# Decode the caption
|
58 |
+
caption_response = get_response_for_image(openai_api_key, image_bytes)
|
59 |
+
json_str = caption_response['choices'][0]['message']['content']
|
60 |
+
json_str = json_str.replace('```json', '').replace('```', '').strip()
|
61 |
+
content_json = json.loads(json_str)
|
62 |
+
caption_text = content_json['Description']
|
63 |
+
|
64 |
+
|
65 |
+
# Generate story based on the caption
|
66 |
+
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
67 |
+
|
68 |
+
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
|
69 |
+
story = llm.invoke(story_prompt)
|
70 |
+
|
71 |
+
return caption_text, story
|
72 |
+
except Exception as e:
|
73 |
+
return f"An error occurred during inference: {str(e)}"
|
74 |
+
|
75 |
+
|
76 |
+
# Using open source models ----------------------------------------------------
|
77 |
|
78 |
+
'''
|
79 |
+
from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
80 |
+
# Load text generation model
|
81 |
+
text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
|
82 |
# Load image captioning model
|
83 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
84 |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
85 |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
|
|
86 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
87 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
88 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
|
|
|
|
89 |
def generate_story(image, theme, genre, word_count):
|
90 |
try:
|
91 |
# Preprocess the image
|
|
|
100 |
|
101 |
# Generate story based on the caption
|
102 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
103 |
+
story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
|
|
|
|
|
|
|
104 |
|
105 |
return caption_text, story
|
106 |
except Exception as e:
|
107 |
return f"An error occurred during inference: {str(e)}"
|
108 |
+
'''
|
109 |
|
110 |
|
111 |
+
# -------------------------------------------------------------------------
|
112 |
|
113 |
# Gradio interface
|
114 |
input_image = gr.Image(label="Select Image",type="pil")
|
|
|
128 |
examples = examples,
|
129 |
title="Image to Story Generator",
|
130 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
131 |
+
).launch()
|