Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,89 @@
|
|
1 |
import gradio as gr
|
2 |
-
# from langchain.llms import OpenAI
|
3 |
-
from langchain_openai import OpenAI
|
4 |
-
from transformers import pipeline
|
5 |
-
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
6 |
|
|
|
|
|
|
|
7 |
import os
|
8 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load text generation model
|
11 |
-
|
12 |
-
# text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
|
13 |
|
14 |
# Load image captioning model
|
15 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
@@ -20,7 +94,6 @@ feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
21 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
22 |
|
23 |
-
|
24 |
def generate_story(image, theme, genre, word_count):
|
25 |
try:
|
26 |
# Preprocess the image
|
@@ -36,15 +109,15 @@ def generate_story(image, theme, genre, word_count):
|
|
36 |
# Generate story based on the caption
|
37 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
38 |
|
39 |
-
|
40 |
-
story = llm.invoke(story_prompt)
|
41 |
-
# story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
|
42 |
|
43 |
return caption_text, story
|
44 |
except Exception as e:
|
45 |
return f"An error occurred during inference: {str(e)}"
|
|
|
46 |
|
47 |
|
|
|
48 |
|
49 |
# Gradio interface
|
50 |
input_image = gr.Image(label="Select Image",type="pil")
|
@@ -64,4 +137,4 @@ gr.Interface(
|
|
64 |
examples = examples,
|
65 |
title="Image to Story Generator",
|
66 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
67 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Using openai models ---------------------------------------------------------
|
4 |
+
|
5 |
+
from langchain_openai import OpenAI
|
6 |
import os
|
7 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
+
import requests
|
12 |
+
|
13 |
+
def generate_story(image, theme, genre, word_count):
|
14 |
+
try:
|
15 |
+
|
16 |
+
width = 1000
|
17 |
+
|
18 |
+
# Function to resize image maintaining aspect ratio with a maximum width of 1000 pixels
|
19 |
+
def resize_image(image, max_width=width):
|
20 |
+
with Image.open(image) as img:
|
21 |
+
ratio = max_width / img.width
|
22 |
+
new_height = int(img.height * ratio)
|
23 |
+
resized_img = img.resize((max_width, new_height), Image.ANTIALIAS)
|
24 |
+
img_byte_arr = io.BytesIO()
|
25 |
+
resized_img.save(img_byte_arr, format=img.format)
|
26 |
+
return img_byte_arr.getvalue()
|
27 |
+
|
28 |
+
# Function to encode the image to base64
|
29 |
+
def encode_image(image):
|
30 |
+
resized_image_bytes = resize_image(image) # Resize the image
|
31 |
+
return base64.b64encode(resized_image_bytes).decode('utf-8')
|
32 |
+
|
33 |
+
# Function to call the API for image and get the response
|
34 |
+
def get_response_for_image(openai_api_key, image):
|
35 |
+
base64_image = encode_image(image)
|
36 |
+
headers = {
|
37 |
+
"Content-Type": "application/json",
|
38 |
+
"Authorization": f"Bearer {openai_api_key}"
|
39 |
+
}
|
40 |
+
payload = {
|
41 |
+
"model": "gpt-4o",
|
42 |
+
"messages": [
|
43 |
+
{
|
44 |
+
"role": "user",
|
45 |
+
"content": [
|
46 |
+
{
|
47 |
+
"type": "text",
|
48 |
+
"text": '''Describe or caption the image within 20 words. Output in json format with key: Description'''
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"type": "image_url",
|
52 |
+
"image_url": {
|
53 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
54 |
+
"detail": "low"
|
55 |
+
}
|
56 |
+
}
|
57 |
+
]
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"max_tokens": 500
|
61 |
+
}
|
62 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
63 |
+
return response['choices'][0]['message']['content']
|
64 |
+
|
65 |
+
|
66 |
+
# Decode the caption
|
67 |
+
caption_text = get_response_for_image(openai_api_key, image)
|
68 |
+
|
69 |
+
# Generate story based on the caption
|
70 |
+
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
71 |
+
|
72 |
+
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
|
73 |
+
story = llm.invoke(story_prompt)
|
74 |
+
|
75 |
+
return caption_text, story
|
76 |
+
except Exception as e:
|
77 |
+
return f"An error occurred during inference: {str(e)}"
|
78 |
+
|
79 |
+
|
80 |
+
# Using open source models ----------------------------------------------------
|
81 |
+
|
82 |
+
'''
|
83 |
+
from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
84 |
+
|
85 |
# Load text generation model
|
86 |
+
text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
|
|
|
87 |
|
88 |
# Load image captioning model
|
89 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
|
|
94 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
95 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
96 |
|
|
|
97 |
def generate_story(image, theme, genre, word_count):
|
98 |
try:
|
99 |
# Preprocess the image
|
|
|
109 |
# Generate story based on the caption
|
110 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
111 |
|
112 |
+
story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
|
|
|
|
|
113 |
|
114 |
return caption_text, story
|
115 |
except Exception as e:
|
116 |
return f"An error occurred during inference: {str(e)}"
|
117 |
+
'''
|
118 |
|
119 |
|
120 |
+
# -------------------------------------------------------------------------
|
121 |
|
122 |
# Gradio interface
|
123 |
input_image = gr.Image(label="Select Image",type="pil")
|
|
|
137 |
examples = examples,
|
138 |
title="Image to Story Generator",
|
139 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
140 |
+
).launch()
|