apratim24 commited on
Commit
43d48c8
·
verified ·
1 Parent(s): 468e7aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -63,12 +63,12 @@ def generate_story(image, theme, genre, word_count):
63
 
64
 
65
  # Generate story based on the caption
66
- story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
67
 
68
  llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key, max_tokens=1000)
69
  story = llm.invoke(story_prompt)
70
 
71
- return story_prompt, story
72
  except Exception as e:
73
  return f"An error occurred during inference: {str(e)}"
74
 
@@ -77,15 +77,21 @@ def generate_story(image, theme, genre, word_count):
77
 
78
  '''
79
  from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
 
80
  # Load text generation model
 
81
  text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
 
82
  # Load image captioning model
 
83
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
84
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
85
  model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
 
86
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
87
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
88
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
 
89
  def generate_story(image, theme, genre, word_count):
90
  try:
91
  # Preprocess the image
@@ -103,6 +109,7 @@ def generate_story(image, theme, genre, word_count):
103
  story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
104
 
105
  return caption_text, story
 
106
  except Exception as e:
107
  return f"An error occurred during inference: {str(e)}"
108
  '''
 
63
 
64
 
65
  # Generate story based on the caption
66
+ story_prompt = f"Write an interesting {theme} story in the {genre} genre about {caption_text}. The story should be within {word_count} words."
67
 
68
  llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key, max_tokens=1000)
69
  story = llm.invoke(story_prompt)
70
 
71
+ return caption_text, story
72
  except Exception as e:
73
  return f"An error occurred during inference: {str(e)}"
74
 
 
77
 
78
  '''
79
  from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
80
+
81
  # Load text generation model
82
+
83
  text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
84
+
85
  # Load image captioning model
86
+
87
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
88
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
89
  model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
90
+
91
  feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
92
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
93
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
94
+
95
  def generate_story(image, theme, genre, word_count):
96
  try:
97
  # Preprocess the image
 
109
  story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
110
 
111
  return caption_text, story
112
+
113
  except Exception as e:
114
  return f"An error occurred during inference: {str(e)}"
115
  '''