apratim24 commited on
Commit
53552be
·
verified ·
1 Parent(s): 3313fb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -1,7 +1,11 @@
1
  import gradio as gr
 
2
  from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
3
  from PIL import Image
4
 
 
 
 
5
  # Load image captioning model
6
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
7
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
@@ -11,6 +15,8 @@ feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
11
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
12
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
13
 
 
 
14
  def generate_story(image, genre, style):
15
  try:
16
  # Preprocess the image
@@ -32,16 +38,18 @@ def generate_story(image, genre, style):
32
  return f"An error occurred during inference: {str(e)}"
33
 
34
 
 
35
  # Gradio interface
36
  input_image = gr.Image(label="Select Image",type="pil")
37
  input_genre = gr.Dropdown(["Hindi", "Spanish", "Portuguese", "French", "German", "Italian", "Russian", "Japanese"], label="Input Genre")
38
  input_style = gr.Dropdown(["Hindi", "Spanish", "Portuguese", "French", "German", "Italian", "Russian", "Japanese"], label="Input Style")
39
  output_text = gr.Textbox(label="Generated Story",lines=8)
40
 
 
41
  gr.Interface(
42
  fn=generate_story,
43
  inputs=[input_image, input_genre, input_style],
44
  outputs=output_text,
45
  title="Image to Story Generator",
46
- description="Generate a story from an image taking genre and style as input."
47
- ).launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
  from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
4
  from PIL import Image
5
 
6
+ # Load text generation model
7
+ text_generation_model = pipeline(task="text-generation")
8
+
9
  # Load image captioning model
10
  encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
11
  decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
 
15
  tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
16
  model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
17
 
18
+
19
+
20
  def generate_story(image, genre, style):
21
  try:
22
  # Preprocess the image
 
38
  return f"An error occurred during inference: {str(e)}"
39
 
40
 
41
+
42
  # Gradio interface
43
  input_image = gr.Image(label="Select Image",type="pil")
44
  input_genre = gr.Dropdown(["Hindi", "Spanish", "Portuguese", "French", "German", "Italian", "Russian", "Japanese"], label="Input Genre")
45
  input_style = gr.Dropdown(["Hindi", "Spanish", "Portuguese", "French", "German", "Italian", "Russian", "Japanese"], label="Input Style")
46
  output_text = gr.Textbox(label="Generated Story",lines=8)
47
 
48
+
49
  gr.Interface(
50
  fn=generate_story,
51
  inputs=[input_image, input_genre, input_style],
52
  outputs=output_text,
53
  title="Image to Story Generator",
54
+ description="Generate a story from an image taking genre and style as input.",
55
+ ).launch()