apruvd's picture
Update app.py
4aa2141
raw
history blame
6.28 kB
import whisper
import gradio as gr
from keybert import KeyBERT
import random as r
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch
from PIL import Image
import time
import matplotlib.pyplot as plt
import numpy as np
import PIL
model = whisper.load_model("base")
model.device
model_id = 'prompthero/midjourney-v4-diffusion' #"stabilityai/stable-diffusion-2"
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id , torch_dtype=torch.float16) #pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
def transcribe(audio,prompt_num,user_keywords):
audio1 = whisper.load_audio(audio)
audio1 = whisper.pad_or_trim(audio1)
mel = whisper.log_mel_spectrogram(audio1).to(model.device)
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
print(result.text)
audio2 = whisper.load_audio(audio)
final_result = model.transcribe(audio2)
print(final_result["text"])
return final_result["text"],int(prompt_num),user_keywords
def keywords(text,prompt_num,user_keywords):
transcription = text
kw_model = KeyBERT()
a = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words=None)
set_1 = [i[0] for i in a]
b = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
use_maxsum=True, nr_candidates=20, top_n=5)
set_2 = [i[0] for i in b]
c = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
use_mmr=True, diversity=0.7)
set_3 = [i[0] for i in c]
d = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
use_mmr=True, diversity=0.2)
set_4 = [i[0] for i in d]
keyword_pool = set_1 + set_2 + set_3 + set_4
print("keywords: ", keyword_pool, "length: ", len(keyword_pool))
generated_prompts = []
count = 0
while count != int(prompt_num):
sentence = []
style_prompts = ["perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting", "detailed, colourful, unreal engine, octane render, blender effect", "70mm, Canon EOS 6D Mark II, 4k, 35mm (FX, Full-Frame), f/2.5, extremely detailed, very high details, photorealistic, hi res, hdr, UHD, hyper-detailed, ultra-realistic, vibrant, centered, vivid colors, Wide angle, zoom out", "detailed, soft ambiance, japanese influence, unreal engine 5, octane render", "perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting --v 4"]
my_list = user_keywords.split(',')
print(my_list)
for i in range(len(my_list)):
sentence.append("mdjrny-v4 style")
for i in range (len(my_list)):
sentence.append(my_list[i])
rand_1 = r.randint(1, 4)
if rand_1 == 1:
sentence.append(r.choice(set_1))
sentence.append(r.choice(set_1))
sentence.append(r.choice(set_2))
sentence.append(r.choice(set_3))
sentence.append(r.choice(set_4))
elif rand_1 == 2:
sentence.append(r.choice(set_2))
sentence.append(r.choice(set_2))
sentence.append(r.choice(set_1))
sentence.append(r.choice(set_3))
sentence.append(r.choice(set_4))
elif rand_1 == 3:
sentence.append(r.choice(set_3))
sentence.append(r.choice(set_3))
sentence.append(r.choice(set_1))
sentence.append(r.choice(set_2))
sentence.append(r.choice(set_4))
else:
sentence.append(r.choice(set_4))
sentence.append(r.choice(set_4))
sentence.append(r.choice(set_1))
sentence.append(r.choice(set_2))
sentence.append(r.choice(set_3))
sentence.append(r.choice(style_prompts))
print("sentence: ", sentence)
myprompt = ', '.join(str(e) for e in sentence)
sentence = []
print("prompt: ",myprompt)
generated_prompts.append(myprompt)
count += 1
count = 0
images = []
while count != int(len(generated_prompts)):
for i in generated_prompts:
count += 1
image = pipe(i, height=768, width=768, guidance_scale = 10).images[0]
images.append(image)
min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
imgs_comb = np.hstack([i.resize(min_shape) for i in images])
imgs_comb = Image.fromarray( imgs_comb)
return images,transcription,keyword_pool,generated_prompts
speech_text = gr.Interface(fn=transcribe, inputs=[gr.Audio(source="microphone", type="filepath"),gr.Number(label = "Number of Images to be generated (int): "),gr.Textbox(label = "Additional keywords (comma delimitied): ")], outputs=["text","number","text"], title = 'Speech to Image Generator', enable_queue=True)
text_prompts = gr.Interface(fn=keywords, title = 'Speech-to-Image-Generator', inputs=["text","number","text"], outputs=[gr.Gallery(label="Generated images", show_label=True, elem_id="gallery").style(grid=[2], height="auto"),gr.TextArea(label="Transcription"),gr.TextArea(label="Keywords"),gr.TextArea(label="Generated Prompts")], theme='darkhuggingface', enable_queue=True)
gr.Series(speech_text,text_prompts).launch(auth = ('PWuser','speechtotextPW'), auth_message = "Welcome to Perkins&Will i/o's Synthesia Tool. Use cases: Ideation/Brainstorming tool - Have it running in the background in a conference, brainstorming session, discussion to create contextually relevant visualizations for moodboarding, to spark more conversations, interactions and inspiration. | Aprameya Pandit | February 2023 | ",inline = False, enable_queue=True).queue()