Spaces:
Runtime error
Runtime error
Creating app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
model = whisper.load_model("base")
|
3 |
+
model.device
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from keybert import KeyBERT
|
8 |
+
import random as r
|
9 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
10 |
+
import torch
|
11 |
+
|
12 |
+
model_id = 'prompthero/midjourney-v4-diffusion' #"stabilityai/stable-diffusion-2"
|
13 |
+
|
14 |
+
# Use the Euler scheduler here instead
|
15 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
16 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id , torch_dtype=torch.float16) #pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
|
17 |
+
pipe = pipe.to("cuda")
|
18 |
+
|
19 |
+
from IPython.display import Image
|
20 |
+
from PIL import Image
|
21 |
+
import time
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
import numpy as np
|
24 |
+
import PIL
|
25 |
+
|
26 |
+
# import cv2
|
27 |
+
|
28 |
+
def transcribe(audio,prompt_num,user_keywords):
|
29 |
+
|
30 |
+
# load audio and pad/trim it to fit 30 seconds
|
31 |
+
audio1 = whisper.load_audio(audio)
|
32 |
+
audio1 = whisper.pad_or_trim(audio1)
|
33 |
+
|
34 |
+
# make log-Mel spectrogram and move to the same device as the model
|
35 |
+
mel = whisper.log_mel_spectrogram(audio1).to(model.device)
|
36 |
+
|
37 |
+
# detect the spoken language
|
38 |
+
_, probs = model.detect_language(mel)
|
39 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
40 |
+
|
41 |
+
# decode the audio
|
42 |
+
options = whisper.DecodingOptions()
|
43 |
+
result = whisper.decode(model, mel, options)
|
44 |
+
print(result.text)
|
45 |
+
|
46 |
+
# model = whisper.load_model("base")
|
47 |
+
audio2 = whisper.load_audio(audio)
|
48 |
+
final_result = model.transcribe(audio2)
|
49 |
+
print(final_result["text"])
|
50 |
+
return final_result["text"],int(prompt_num),user_keywords
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def keywords(text,prompt_num,user_keywords):
|
55 |
+
|
56 |
+
# ub = UrlBuilder("demo.imgix.net")
|
57 |
+
|
58 |
+
kw_model = KeyBERT()
|
59 |
+
a = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words=None)
|
60 |
+
set_1 = [i[0] for i in a]
|
61 |
+
b = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
|
62 |
+
use_maxsum=True, nr_candidates=20, top_n=5)
|
63 |
+
set_2 = [i[0] for i in b]
|
64 |
+
c = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
|
65 |
+
use_mmr=True, diversity=0.7)
|
66 |
+
set_3 = [i[0] for i in c]
|
67 |
+
d = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
|
68 |
+
use_mmr=True, diversity=0.2)
|
69 |
+
set_4 = [i[0] for i in d]
|
70 |
+
keyword_pool = set_1 + set_2 + set_3 + set_4
|
71 |
+
print("keywords: ", keyword_pool, "length: ", len(keyword_pool))
|
72 |
+
|
73 |
+
generated_prompts = []
|
74 |
+
|
75 |
+
count = 0
|
76 |
+
|
77 |
+
while count != int(prompt_num):
|
78 |
+
|
79 |
+
sentence = []
|
80 |
+
|
81 |
+
style_prompts = ["perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting", "detailed, colourful, psychedelic, unreal engine, octane render, blender effect", "mechanical features, cybernetic eyes, baroque, rococo, anodized titanium highly detailed mechanisms, gears, fiber, cogs, bulbs, wires, cables, 70mm, Canon EOS 6D Mark II, 4k, 35mm (FX, Full-Frame), f/2.5, extremely detailed, very high details, photorealistic, hi res, hdr, UHD, hyper-detailed, ultra-realistic, vibrant, centered, vivid colors, Wide angle, zoom out", "detailed, soft ambiance, japanese influence, unreal engine 5, octane render", "perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting --v 4"]
|
82 |
+
|
83 |
+
my_list = user_keywords.split(',')
|
84 |
+
print(my_list)
|
85 |
+
|
86 |
+
# for i in range(len(my_list)):
|
87 |
+
# sentence.append(my_list[i])
|
88 |
+
|
89 |
+
# numb = 5
|
90 |
+
for i in range(len(my_list)):
|
91 |
+
# print("keyword_pool",keyword_pool, len(keyword_pool))
|
92 |
+
|
93 |
+
sentence.append("mdjrny-v4 style")
|
94 |
+
|
95 |
+
for i in range (len(my_list)):
|
96 |
+
sentence.append(my_list[i])
|
97 |
+
|
98 |
+
rand_1 = r.randint(1, 4)
|
99 |
+
|
100 |
+
if rand_1 == 1:
|
101 |
+
sentence.append(r.choice(set_1))
|
102 |
+
sentence.append(r.choice(set_1))
|
103 |
+
sentence.append(r.choice(set_2))
|
104 |
+
sentence.append(r.choice(set_3))
|
105 |
+
sentence.append(r.choice(set_4))
|
106 |
+
elif rand_1 == 2:
|
107 |
+
sentence.append(r.choice(set_2))
|
108 |
+
sentence.append(r.choice(set_2))
|
109 |
+
sentence.append(r.choice(set_1))
|
110 |
+
sentence.append(r.choice(set_3))
|
111 |
+
sentence.append(r.choice(set_4))
|
112 |
+
elif rand_1 == 3:
|
113 |
+
sentence.append(r.choice(set_3))
|
114 |
+
sentence.append(r.choice(set_3))
|
115 |
+
sentence.append(r.choice(set_1))
|
116 |
+
sentence.append(r.choice(set_2))
|
117 |
+
sentence.append(r.choice(set_4))
|
118 |
+
else:
|
119 |
+
sentence.append(r.choice(set_4))
|
120 |
+
sentence.append(r.choice(set_4))
|
121 |
+
sentence.append(r.choice(set_1))
|
122 |
+
sentence.append(r.choice(set_2))
|
123 |
+
sentence.append(r.choice(set_3))
|
124 |
+
|
125 |
+
# Add Style Tail Prompt
|
126 |
+
sentence.append(r.choice(style_prompts))
|
127 |
+
|
128 |
+
print("sentence: ", sentence)
|
129 |
+
|
130 |
+
# Formatting Data as comma-delimited for Mid Journey
|
131 |
+
myprompt = ', '.join(str(e) for e in sentence)
|
132 |
+
sentence = []
|
133 |
+
print("prompt: ",myprompt)
|
134 |
+
generated_prompts.append(myprompt)
|
135 |
+
|
136 |
+
count += 1
|
137 |
+
|
138 |
+
print("no. of prompts: ", len(generated_prompts))
|
139 |
+
print("generated prompts: ", generated_prompts)
|
140 |
+
|
141 |
+
count = 0
|
142 |
+
images = []
|
143 |
+
# np_images = []
|
144 |
+
while count != int(len(generated_prompts)):
|
145 |
+
|
146 |
+
for i in generated_prompts:
|
147 |
+
count += 1
|
148 |
+
print(i)
|
149 |
+
image = pipe(i, height=768, width=768, guidance_scale = 10).images[0]
|
150 |
+
image.save("/content/drive/MyDrive/ColabNotebooks/GeneratedImages/" + "sd_image_" +str(count)+ ".png")
|
151 |
+
images.append(image)
|
152 |
+
|
153 |
+
|
154 |
+
# pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
|
155 |
+
min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
|
156 |
+
imgs_comb = np.hstack([i.resize(min_shape) for i in images])
|
157 |
+
|
158 |
+
# save that beautiful picture
|
159 |
+
imgs_comb = Image.fromarray( imgs_comb)
|
160 |
+
imgs_comb.save("/content/drive/MyDrive/ColabNotebooks/GeneratedImages/" + "Combined.png")
|
161 |
+
|
162 |
+
|
163 |
+
# return imgs_comb #for combined image
|
164 |
+
return images
|
165 |
+
|
166 |
+
speech_text = gr.Interface(fn=transcribe, inputs=[gr.Audio(source="microphone", type="filepath"),gr.Number(placeholder = "Number of Images to be generated (int): "),gr.Textbox(placeholder = "Additional keywords (comma delimitied): ")], outputs=["text","number","text"], title = 'Speech to Image Generator', enable_queue=True)
|
167 |
+
text_prompts = gr.Interface(fn=keywords, inputs=["text","number","text"], outputs=gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto"), title = 'Speech to Image Generator', enable_queue=True)
|
168 |
+
|
169 |
+
gr.Series(speech_text,text_prompts).launch(inline = False, share = True, debug = True, enable_queue=True).queue()
|
170 |
+
|
171 |
+
|
172 |
+
|