File size: 23,215 Bytes
c176aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from utils.dataset_loader import get_dataset
from nets.dense import Net
from nets.deep_dense import dmodel
from PINN.pinns import *

import matplotlib.pyplot as plt
import seaborn as sns
import torch
import os
import numpy as np
from torch import nn, tensor
import pandas as pd
import plotly.express as px
from sklearn.linear_model import SGDRegressor
from sklearn.feature_selection import SelectFromModel

class SCI(): #Scaled Computing Interface
    """ Scaled computing interface.
    Args:
            hidden_dim (int, optional): Max demension of hidden linear layer. Defaults to 200. Should be >80 in not 1d case
            dropout (bool, optional): LEGACY, don't use. Defaults to True.
            epochs (int, optional): Optionally specify epochs here, but better in train. Defaults to 10.
            dataset (str, optional): dataset to be selected from ./data. Defaults to 'test.pkl'. If name not exists, code will generate new dataset with upcoming parameters.
            sample_size (int, optional): Samples to be generated (note: BEFORE applying boundary conditions). Defaults to 1000.
            source (str, optional): Source from which data will be generated. Better to not change. Defaults to 'dataset.csv'.
            boundary_conditions (list, optional): If sepcified, whole dataset will be cut rectangulary. Input list is [ymin,ymax,xmin,xmax] type. Defaults to None.
    """
    def __init__(self, hidden_dim:int = 200, dropout:bool = True, epochs:int = 10, dataset:str = 'test.pkl',sample_size:int=1000,source:str='dataset.csv',boundary_conditions:list=None):
        """Init
        Args:
            hidden_dim (int, optional): Max demension of hidden linear layer. Defaults to 200. Should be >80 in not 1d case
            dropout (bool, optional): LEGACY, don't use. Defaults to True.
            epochs (int, optional): Optionally specify epochs here, but better in train. Defaults to 10.
            dataset (str, optional): dataset to be selected from ./data. Defaults to 'test.pkl'. If name not exists, code will generate new dataset with upcoming parameters.
            sample_size (int, optional): Samples to be generated (note: BEFORE applying boundary conditions). Defaults to 1000.
            source (str, optional): Source from which data will be generated. Better to not change. Defaults to 'dataset.csv'.
            boundary_conditions (list, optional): If sepcified, whole dataset will be cut rectangulary. Input list is [ymin,ymax,xmin,xmax] type. Defaults to None.
        """
        self.type:str = 'legacy'
        self.seed:int = 449
        self.dim = hidden_dim
        self.dropout = dropout
        self.df = get_dataset(sample_size=sample_size,source=source,name=dataset,boundary_conditions=boundary_conditions)
        self.epochs = epochs
        self.len_idx = 0
        self.input_dim_for_check = 0
        
    def feature_gen(self, base:bool=True, fname:str=None,index:int=None,func=None) -> None:
        """ Generate new features. If base true, generates most obvious ones. You can customize this by adding 
        new feature as name of column - fname, index of parent column, and lambda function which needs to be applied elementwise.
        Args:
            base (bool, optional):  Defaults to True.
            fname (str, optional): Name of new column. Defaults to None.
            index (int, optional): Index of parent column. Defaults to None.
            func (_type_, optional): lambda function. Defaults to None.
        """
        
        if base:
            self.df['P_sqrt'] = self.df.iloc[:,1].apply(lambda x: x ** 0.5)
            self.df['j'] = self.df.iloc[:,1]/(self.df.iloc[:,3]*self.df.iloc[:,4])
            self.df['B'] = self.df.iloc[:,-1].apply(lambda x: x ** 2).apply(lambda x:1 if x>1 else x)
            self.df['nu_t'] = self.df.iloc[:,7]**2/(2*self.df.iloc[:,6]*self.df.P)
            
        if fname and index and func:
            self.df[fname] = self.df.iloc[:,index].apply(func)
        
    def feature_importance(self,X:pd.DataFrame,Y:pd.Series,verbose:int=1):
        """ Gets feature importance by SGD regression and score selection. Default threshold is 1.25*mean
        input X as self.df.iloc[:,(columns of choice)]
              Y as self.df.iloc[:,(column of choice)]
        Args:
            X (pd.DataFrame): Builtin DataFrame
            Y (pd.Series): Builtin Series
            verbose (int, optional): either to or to not print actual report. Defaults to 1.
        Returns:
            Report (str)
        """
        
        mod = SGDRegressor()
        
        selector = SelectFromModel(mod,threshold='1.25*mean')
        selector.fit(np.array(X),np.array(Y))
        
        if verbose:
            print(f'\n Report of feature importance: {dict(zip(X.columns,selector.estimator_.coef_))}')
        for i in range(len(selector.get_support())):
            if selector.get_support()[i]:
                print(f'-rank 1 PASSED:',X.columns[i])
            else:
                print(f'-rank 0 REJECT:',X.columns[i])
        return f'\n Report of feature importance: {dict(zip(X.columns,selector.estimator_.coef_))}'
        
    def data_flow(self,columns_idx:tuple = (1,3,3,5), idx:tuple=None, split_idx:int = 800) -> torch.utils.data.DataLoader:
        """ Data prep pipeline
        It is called automatically, don't call it in your code.
        Args:
            columns_idx (tuple, optional): Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5). 
            idx (tuple, optional): 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx)
            split_idx (int) : Index to split for training
            
        Returns:
            torch.utils.data.DataLoader: Torch native dataloader
        """
        batch_size=2
        
        self.split_idx=split_idx
        
        if idx!=None:
            self.len_idx = len(idx)
            if len(idx)==2:
                self.X = tensor(self.df.iloc[:,idx[0]].values[:split_idx]).float()
                self.Y = tensor(self.df.iloc[:,idx[1]].values[:split_idx]).float()
                batch_size = 1
            else:
                self.X = tensor(self.df.iloc[:,[*idx[:-1]]].values[:split_idx,:]).float()
                self.Y = tensor(self.df.iloc[:,idx[2]].values[:split_idx]).float()
        else:
            self.X = tensor(self.df.iloc[:,columns_idx[0]:columns_idx[1]].values[:split_idx,:]).float()
            self.Y = tensor(self.df.iloc[:,columns_idx[2]:columns_idx[3]].values[:split_idx]).float()
            
        print('Shapes for debug: (X,Y)',self.X.shape, self.Y.shape)
        train_data = torch.utils.data.TensorDataset(self.X, self.Y)
        Xtrain = torch.utils.data.DataLoader(train_data,batch_size=batch_size)
        self.input_dim = self.X.size(-1)
        self.indexes = idx if idx else columns_idx
        self.column_names = [self.df.columns[i] for i in self.indexes]
        return Xtrain
        
    def init_seed(self,seed):
        """ Initializes seed for torch optional()
        """
        
        torch.manual_seed(seed)
        
    def train_epoch(self,X, model, loss_function, optim):
        for i,data in enumerate(X):
                Y_pred = model(data[0])
                loss = loss_function(Y_pred, data[1])
                
                # mean_abs_percentage_error = MeanAbsolutePercentageError()
                # ape = mean_abs_percentage_error(Y_pred, data[1])
                
                loss.backward()
                optim.step()
                optim.zero_grad()
            
                
                ape_norm = abs(np.mean((Y_pred.detach().numpy()-data[1].detach().numpy())/(data[1].detach().numpy()+0.1)))
                if (i+1)%200==0:
                    print(f'Iter {i+1} APE =',ape_norm)
                self.loss_history.append(loss.data.item())
                self.ape_history.append(None if ape_norm >1 else ape_norm)
                
    def compile(self,columns:tuple=None,idx:tuple=None, optim:torch.optim = torch.optim.AdamW,loss:nn=nn.L1Loss, model:nn.Module = dmodel, custom:bool=False, lr:float=0.0001) -> None:
        """ Builds model, loss, optimizer. Has defaults
        Args:
            columns (tuple, optional): Columns to be selected for feature fitting. Defaults to (1,3,3,5).
            optim - torch Optimizer. Default AdamW
            loss - torch Loss function (nn). Defaults to L1Loss
        """
        
        self.columns = columns
        
                
        if not(columns):
            self.len_idx = 0
        else:
            self.len_idx = len(columns)
            
        if not(self.columns) and not(idx):
            self.Xtrain = self.data_flow()
        elif not(idx): 
            self.Xtrain = self.data_flow(columns_idx=self.columns)
        else:
            self.Xtrain = self.data_flow(idx=idx)
            
        if custom:
            self.model = model()
            self.loss_function = loss()
            self.optim = optim(self.model.parameters(), lr=lr)
            if self.len_idx == 2:
                self.input_dim_for_check = 1
        else: 
            if self.len_idx == 2:
                self.model = model(in_features=1,hidden_features=self.dim).float()
                self.input_dim_for_check = 1
            if self.len_idx == 3:
                self.model = Net(input_dim=2,hidden_dim=self.dim).float()
            if (self.len_idx != 2 or 3) or self.columns:
                self.model = Net(input_dim=self.input_dim,hidden_dim=self.dim).float()
                
            self.optim = optim(self.model.parameters(), lr=lr)
            self.loss_function = loss()
            
        if self.input_dim_for_check:
            self.X  = self.X.reshape(-1,1)
        
       
    
    def train(self,epochs:int=10) -> None:
        """ Train model
        If sklearn instance uses .fit()
        
        epochs - optional
        """
        if 'sklearn' in str(self.model.__class__):
            self.model.fit(np.array(self.X),np.array(self.Y))
            plt.scatter(self.X,self.model.predict(self.X))
            plt.scatter(self.X,self.Y)
            plt.xlabel('Xreal')
            plt.ylabel('Ypred/Yreal')
            plt.show()
            return print('Sklearn model fitted successfully')
        else:
            self.model.train()
            
        self.loss_history = []
        self.ape_history = []
        
        self.epochs = epochs
        
        
        for j in range(self.epochs):
            self.train_epoch(self.Xtrain,self.model,self.loss_function,self.optim)
            
        plt.plot(self.loss_history,label='loss_history')
        plt.legend()
            
    def save(self,name:str='model.pt') -> None:
        torch.save(self.model,name)
        
    def onnx_export(self,path:str='./models/model.onnx'):
        torch.onnx.export(self.model,self.X,path)
        
    def jit_export(self,path:str='./models/model.pt'):
        """Exports properly defined model to jit
        Args:
            path (str, optional): path to models. Defaults to './models/model.pt'.
        """
        torch.jit.save(self.model,path)
        
    def inference(self,X:tensor, model_name:str=None) -> np.ndarray:
        """ Inference of (pre-)trained model
        Args:
            X (tensor): your data in domain of train
        Returns:
            np.ndarray: predictions
        """
        if model_name is None:
            self.model.eval()
            
        if model_name in os.listdir('./models'):
            model = torch.load(f'./models/{model_name}')
            model.eval()
            return model(X).detach().numpy()
        
        return self.model(X).detach().numpy()

    def plot(self):
        """ Automatic 2d plot
        """
        self.model.eval()
        print(self.Y.shape,self.model(self.X).detach().numpy().shape,self.X.shape)
        if self.X.shape[-1] != self.model(self.X).detach().numpy().shape[-1]:
            print('Size mismatch, try 3d plot, plotting by first dim of largest tensor')
            if len(self.X.shape)==1:
                X = self.X
            else: X = self.X[:,0]
            plt.scatter(X,self.model(self.X).detach().numpy(),label='predicted',s=2)
            if len(self.Y.shape)!=1:
                plt.scatter(X,self.Y[:,1],s=1,label='real')
            else:
                plt.scatter(X,self.Y,s=1,label='real')
            plt.xlabel(rf'${self.column_names[0]}$')
            plt.ylabel(rf'${self.column_names[1]}$')
            plt.legend()
        else:
            plt.scatter(self.X,self.model(self.X).detach().numpy(),s=2,label='predicted')
            plt.scatter(self.X,self.Y,s=1,label='real')
            plt.xlabel(r'$X$')
            plt.ylabel(r'$Y$')
            plt.legend()
        
    def plot3d(self,colX=0,colY=1):
        """ Plot of inputs and predicted data in mesh format
        Returns:
            plotly plot
        """
        X = self.X
        self.model.eval()
        x = X[:,colX].numpy().ravel()
        y = X[:,colY].numpy().ravel()
        z = self.model(X).detach().numpy().ravel()
        surf = px.scatter_3d(x=x, y=y,z=self.df.iloc[:,self.indexes[-1]].values[:self.split_idx],opacity=0.3,
                             labels={'x':f'{self.column_names[colX]}',
                                     'y':f'{self.column_names[colY]}',
                                     'z':f'{self.column_names[-1]}'
                                     },title='Mesh prediction plot'
                            )
        # fig.colorbar(surf, shrink=0.5, aspect=5)
        surf.update_traces(marker_size=3)
        surf.update_layout(plot_bgcolor='#888888')
        surf.add_mesh3d(x=x, y=y, z=z, opacity=0.7,colorscale='sunsetdark',intensity=z,
            )
        # surf.show()
        
        return surf
    def performance(self,c=0.4) -> dict:
        """ Automatic APE based performance if applicable, else returns nan
        Args:
             c (float, optional): ZDE mitigation constant. Defaults to 0.4.
        Returns:
            dict: {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
        """
        a=[]
        for i in range(1000):
            a.append(100-abs(np.mean(self.df.iloc[1:24,1:8].values-self.df.iloc[24:,1:8].sample(23).values)/(self.Y.numpy()[1:]+c))*100)
        gen_acc = np.mean(a)
        ape = (100-abs(np.mean(self.model(self.X).detach().numpy()-self.Y.numpy()[1:])*100))
        abs_ape = ape*gen_acc/100
        return {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
    
    def performance_super(self,c=0.4,real_data_column_index:tuple = (1,8),real_data_samples:int=23, generated_length:int=1000) -> dict:
        """Performance by custom parameters. APE loss
        Args:
            c (float, optional): ZDE mitigation constant. Defaults to 0.4.
            real_data_column_index (tuple, optional): Defaults to (1,8).
            real_data_samples (int, optional): Defaults to 23.
            generated_length (int, optional): Defaults to 1000.
        Returns:
            dict: {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
        """
        a=[]
        for i in range(1000):
            a.append(100-abs(np.mean(self.df.iloc[1:real_data_samples+1,real_data_column_index[0]:real_data_column_index[1]].values-self.df.iloc[real_data_samples+1:,real_data_column_index[0]:real_data_column_index[1]].sample(real_data_samples).values)/(self.Y.numpy()[1:]+c))*100)
        gen_acc = np.mean(a)
        ape = (100-abs(np.mean(self.model(self.X).detach().numpy()-self.Y.numpy()[1:])*100))
        abs_ape = ape*gen_acc/100
        return {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
    
    def performance_super(self,c=0.4,real_data_column_index:tuple = (1,8),real_data_samples:int=23, generated_length:int=1000) -> dict:
        a=[]
        for i in range(1000):
            a.append(100-abs(np.mean(self.df.iloc[1:real_data_samples+1,real_data_column_index[0]:real_data_column_index[1]].values-self.df.iloc[real_data_samples+1:,real_data_column_index[0]:real_data_column_index[1]].sample(real_data_samples).values)/(self.Y.numpy()[1:]+c))*100)
        gen_acc = np.mean(a)
        ape = (100-abs(np.mean(self.model(self.X).detach().numpy()-self.Y.numpy()[1:])*100))
        abs_ape = ape*gen_acc/100
        return {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
    def performance_super(self,c=0.4,real_data_column_index:tuple = (1,8),real_data_samples:int=23, generated_length:int=1000) -> dict:
        a=[]
        for i in range(1000):
            a.append(100-abs(np.mean(self.df.iloc[1:real_data_samples+1,real_data_column_index[0]:real_data_column_index[1]].values-self.df.iloc[real_data_samples+1:,real_data_column_index[0]:real_data_column_index[1]].sample(real_data_samples).values)/(self.Y.numpy()[1:]+c))*100)
        gen_acc = np.mean(a)
        ape = (100-abs(np.mean(self.model(self.X).detach().numpy()-self.Y.numpy()[1:])*100))
        abs_ape = ape*gen_acc/100
        return {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
    
class RCI(SCI): #Real object interface
    """ Real values interface, uses different types of NN, NO scaling.
    Parent:
        SCI()
    """
    def __init__(self,*args,**kwargs):
        super(RCI,self).__init__()
        
    def data_flow(self,columns_idx:tuple = (1,3,3,5), idx:tuple=None, split_idx:int = 800) -> torch.utils.data.DataLoader:
            """ Data prep pipeline
            Args:
                columns_idx (tuple, optional): Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5). 
                idx (tuple, optional): 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx)
                split_idx (int) : Index to split for training
                
            Returns:
                torch.utils.data.DataLoader: Torch native dataloader
            """
            batch_size=2
            
            real_scale = pd.read_csv('data/dataset.csv').iloc[17,1:].to_numpy()
            self.df.iloc[:,1:] = self.df.iloc[:,1:] * real_scale
            
            self.split_idx=split_idx
            
                        
            if idx!=None:
                self.len_idx = len(idx)
                if len(idx)==2:
                    self.X = tensor(self.df.iloc[:,idx[0]].values[:split_idx].astype(float)).float()
                    self.Y = tensor(self.df.iloc[:,idx[1]].values[:split_idx].astype(float)).float()
                    batch_size = 1
                else:
                    self.X = tensor(self.df.iloc[:,[idx[0],idx[1]]].values[:split_idx,:].astype(float)).float()
                    self.Y = tensor(self.df.iloc[:,idx[2]].values[:split_idx].astype(float)).float()
            else:
                self.X = tensor(self.df.iloc[:,columns_idx[0]:columns_idx[1]].values[:split_idx,:].astype(float)).float()
                self.Y = tensor(self.df.iloc[:,columns_idx[2]:columns_idx[3]].values[:split_idx].astype(float)).float()
            self.Y = self.Y.abs()
            self.X = self.X.abs()
            
            print('Shapes for debug: (X,Y)',self.X.shape, self.Y.shape)
            train_data = torch.utils.data.TensorDataset(self.X, self.Y)
            Xtrain = torch.utils.data.DataLoader(train_data,batch_size=batch_size)
            self.input_dim = self.X.size(-1)
            self.indexes = idx if idx else columns_idx
            self.column_names = [ self.df.columns[i] for i in self.indexes ]
            
            
            
            
            return Xtrain
        
    def compile(self,columns:tuple=None,idx:tuple=(3,1), optim:torch.optim = torch.optim.AdamW,loss:nn=nn.L1Loss, model:nn.Module = PINNd_p,lr:float=0.001) -> None:
        """ Builds model, loss, optimizer. Has defaults
        Args:
            columns (tuple, optional): Columns to be selected for feature fitting. Defaults to None.
            idx (tuple, optional): indexes to be selected Default (3,1)
            optim - torch Optimizer
            loss - torch Loss function (nn)
        """
        
        self.columns = columns
        
                
        if not(columns):
            self.len_idx = 0
        else:
            self.len_idx = len(columns)
            
        if not(self.columns) and not(idx):
            self.Xtrain = self.data_flow()
        elif not(idx): 
            self.Xtrain = self.data_flow(columns_idx=self.columns)
        else:
            self.Xtrain = self.data_flow(idx=idx)
        
        self.model = model().float()
        self.input_dim_for_check = self.X.size(-1)
                
        self.optim = optim(self.model.parameters(), lr=lr)
        self.loss_function = loss()
            
        if self.input_dim_for_check == 1:
            self.X  = self.X.reshape(-1,1)
    def plot(self):
        """ Plots 2d plot of prediction vs real values
        """
        self.model.eval()
        if 'PINN' in str(self.model.__class__):
            self.preds=np.array([])
            for i in self.X:
                self.preds = np.append(self.preds,self.model(i).detach().numpy()) 
        print(self.Y.shape,self.preds.shape,self.X.shape)
        if self.X.shape[-1] != self.preds.shape[-1]:
            print('Size mismatch, try 3d plot, plotting by first dim of largest tensor')
            try: X = self.X[:,0]
            except:
                X = self.X
                pass
            plt.scatter(X,self.preds,label='predicted',s=2)
            if self.Y.shape[-1]!=1:
                sns.scatterplot(x=X,y=self.Y,s=2,label='real')
            else:
                sns.scatterplot(x=X,y=self.Y,s=1,label='real')
            plt.xlabel(rf'${self.column_names[0]}$')
            plt.ylabel(rf'${self.column_names[1]}$')
            plt.legend()
        else:
            sns.scatterplot(x=self.X,y=self.preds,s=2,label='predicted')
            sns.scatterplot(x=self.X,y=self.Y,s=1,label='real')
            plt.xlabel(r'$X$')
            plt.ylabel(r'$Y$')
            plt.legend()
            
    def performance(self,c=0.4) -> dict:
        """RCI performnace. APE errors.
        Args:
            c (float, optional): correction constant to mitigate division by 0 error. Defaults to 0.4.
        Returns:
            dict: {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}
        """
        a=[]
        for i in range(1000):
            dfcopy = (self.df.iloc[:,1:8]-self.df.iloc[:,1:8].min())/(self.df.iloc[:,1:8].max()-self.df.iloc[:,1:8].min())
            a.append(100-abs(np.mean(dfcopy.iloc[1:24,1:].values-dfcopy.iloc[24:,1:].sample(23).values)/(dfcopy.iloc[1:24,1:].values+c))*100)
        gen_acc = np.mean(a)
        
        ape = (100-abs(np.mean(self.preds-self.Y.numpy())*100))
        abs_ape = ape*gen_acc/100
        return {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}