|
from torch import nn |
|
|
|
class Net(nn.Module): |
|
"""4 layer model, different activations and neurons count on layer |
|
|
|
""" |
|
def __init__(self,input_dim:int=2,hidden_dim:int=200): |
|
"""Init |
|
|
|
Args: |
|
input_dim (int, optional): Defaults to 2. |
|
hidden_dim (int, optional): Defaults to 200. |
|
""" |
|
super(Net,self).__init__() |
|
self.input = nn.Linear(input_dim,40) |
|
self.act1 = nn.Tanh() |
|
self.layer = nn.Linear(40,80) |
|
self.act2 = nn.ReLU() |
|
self.layer1 = nn.Linear(80,hidden_dim) |
|
self.act3 = nn.ReLU() |
|
self.layer2 = nn.Linear(hidden_dim,1) |
|
|
|
def forward(self, x): |
|
x = self.act2(self.layer(self.act1(self.input(x)))) |
|
x = self.act3(self.layer1(x)) |
|
x = self.layer2(x) |
|
return x |
|
|