from torch import nn from torch.functional import F class dmodel(nn.Module): """4 layers Torch model. Relu activations, hidden layers are same size. """ def __init__(self, in_features=1, hidden_features=200, out_features=1): """Init Args: in_features (int, optional): Input features. Defaults to 1. hidden_features (int, optional): Hidden dims. Defaults to 200. out_features (int, optional): Output dims. Defaults to 1. """ super(dmodel, self).__init__() self.fc1 = nn.Linear(in_features, hidden_features) self.fc2 = nn.Linear(hidden_features, hidden_features) self.fc3 = nn.Linear(hidden_features, hidden_features) self.fc4 = nn.Linear(hidden_features, out_features) def forward(self, x): x = self.fc1(x) x = F.relu(x) # ReLU activation x = self.fc2(x) x = F.relu(x) # ReLU activation x = self.fc3(x) x = F.relu(x) # ReLU activation x = self.fc4(x) return x